EPANET 2.0 en Español

Análisis Hidráulico y de Calidad en Redes de Distribución de Agua

Manual del Usuario

Grupo REDHISP Inst. Ingeniería del Agua y M.A. Universidad Politécnica de Valencia Octubre 2002

Versión publicada en 30/10/2002

EPANET 2

MANUAL DEL USUARIO

por

Lewis A. Rossman Water Supply and Water Resources Division National Risk Management Research Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Cincinnati, OH 45268 Traducción al español:

Fernando Martínez Alzamora Grupo REDHISP. Inst. Ingeniería del Agua y M.A. Universidad Politécnica de Valencia (España)

Financiación:

Grupo Aguas de Valencia G.V. Marqués del Turia, 19 46005 - Valencia

Título original:

"EPANET 2 USER'S MANUAL" EPA/600/R-00/057 September 2000

NATIONAL RISK MANAGEMENT RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINATTI, OH 45268, USA

Ninguna parte de este libro puede ser reproducida, grabada en sistema de almacenamiento o transmitida en forma alguna ni por cualquier procedimiento, ya sea electrónico, mecánico, reprográfico, magnético o cualquier otro, sin autorización previa y por escrito, tanto del autor, de Aguas de Valencia, como de Librería Politécnica.

©Copyright versión española: Fernando Martínez Grupo de Redes Hidráulicas y Sistemas a Presión (REDHISP) Instituto de Ingeniería del Agua y Medio Ambiente Universidad Politécnica de Valencia (España)

I.S.B.N.: 84-

Depósito Legal:

DESCARGOS

La información contenida en este documento ha sido financiada totalmente o en parte por la Agencia del Medio Ambiente de EEUU (U.S. Environmental Protection Agency -EPA). Ha estado sometida a una revisión técnica y administrativa por parte de la Agencia, habiendo sido aprobada para su publicación como un documento de la EPA. La mención de marcas registradas o productos comerciales no presupone el apoyo a los mismos o la recomendación de su uso.

Aunque se ha realizado un notable esfuerzo para asegurar que los resultados obtenidos con los programas descritos en este manual sean correctos, éstos no dejan de ser experimentales. Por consiguiente, el autor y la U.S. Environmental Protection Agency no se responsabilizan ni asumen obligación alguna en relación a los resultados obtenidos con los programas o el uso que se haga de los mismos, ni tampoco por los perjuicios o litigios que pudieran derivarse del uso de estos programas con cualquier fin.

PRÓLOGO A LA EDICIÓN ORIGINAL

La Agencia para la Protección del Medio Ambiente de EEUU (U.S. Environmental Protection Agency) tiene la misión, por encargo del Congreso, de proteger el suelo, la atmósfera y los recursos hídricos de la nación. Bajo el mandato de las leyes nacionales para la conservación del medio ambiente, la Agencia se esfuerza en proponer y llevar a cabo actuaciones dirigidas a hacer compatible el equilibrio entre las actividades humanas y la capacidad del medio natural para mantener y procurar la vida. Al objeto de cumplir este cometido, los programas de investigación de la EPA están dirigidos a proporcionar los datos y el soporte técnico requerido para resolver los problemas medioambientales de hoy en día, y construir una base de conocimientos sólida que permita gestionar prudentemente nuestros recursos ecológicos, comprender cómo la contaminación puede afectar a la salud, y prevenir o reducir los riesgos medioambientales en el futuro.

El Laboratorio de Investigación Nacional para la Gestión de Riesgos (National Risk Management Research Laboratory) es un Centro de la Agencia dedicado a la investigación de procedimientos técnicos y de gestión, orientados a reducir los riesgos que amenazan a la salud humana y al medio ambiente. El principal objetivo de los programas de investigación que tiene en marcha el Laboratorio se centra en el desarrollo de métodos para la prevención y control de la contaminación del aire, del suelo, del agua y de los recursos sub-superficiales; a la protección de la calidad del agua en los abastecimientos públicos; a la recuperación de zonas y acuíferos contaminados; y a la prevención y control de la contaminación del aire en recintos interiores. El propósito de todo este esfuerzo de investigación es catalizar el desarrollo e implantación de tecnologías medioambientales innovadoras y económicamente justificables; obtener la información científica e ingenieril requerida por la EPA para avalar las propuestas de normativas y planes de actuación; y finalmente proporcionar el soporte técnico y la transferencia de información requerida para asegurar una implantación efectiva de las estrategias y normativas medioambientales

Al objeto de satisfacer los requerimientos de las normativas, así como los deseos de los usuarios, las compañías que gestionan los servicios de agua han manifestado una necesidad creciente por comprender mejor el avance y las transformaciones que experimenta el agua tratada, cuando se introduce en las redes de distribución. EPANET es un modelo de simulación por computador que ayuda a cumplir este objetivo. Predice el comportamiento hidráulico y de la calidad del agua en un sistema de distribución de agua durante periodos de operación prolongados. Este manual describe el manejo de una versión del programa recientemente revisada, la cual incorpora numerosas mejoras introducidas durante los últimos años.

E. Timothy Oppelt Director del National Risk Management Research Laboratory

PRÓLOGO A LA TRADUCCIÓN ESPAÑOLA

EPANET es un programa orientado al análisis del comportamiento de los sistemas de distribución de agua y el seguimiento de la calidad del agua en los mismos, que ha tenido una gran aceptación en España, y en todos los países de habla hispana, desde su lanzamiento en Europa en Septiembre de 1993. Ello se debe principalmente al excelente trabajo realizado por su autor L. Rossman, quien ha sabido conjugar los algoritmos de cálculo más avanzados con una interfaz gráfica potente y amigable. También han influido en su difusión otros factores, como la posibilidad de integrar el módulo de cálculo en otras aplicaciones, el soporte dado por la EPA para su distribución gratuita, y la existencia de una lista abierta de usuarios para realización de todo tipo de consultas y puesta al día. Además, su difusión en los países de habla hispana ha estado potenciada por las sucesivas traducciones realizadas por quien suscribe, desde la versión 1.1b lanzada en Noviembre de 1994, hasta la más reciente.

Entre la multitud de aplicaciones de EPANET cabe destacar la planificación de mejoras en las redes, el trazado y selección de nuevos elementos, la detección de los 'cuellos de botella' de la red, la evaluación de la calidad y tiempo de vida de los materiales, la regulación de las presiones en la red, la reducción de los costes d e operación, la regulación del uso de los depósitos para reducir los tiempos de retención del agua, la previsión de la respuesta de la red ante la clausura de un punto de alimentación o la incorporación de nuevas urbanizaciones, la planificación de actuaciones en casos de emergencia, como la entrada de un contaminante no controlado, la localización de estaciones de recloración, la sectorización de la red para el control de fugas, etc. En el futuro los modelos deben constituir un soporte de uso continuado para la toma de decisiones de carácter técnico en todas las empresas encargadas de la distribución del agua potable.

Las sucesivas ediciones españolas de la versión 1.1 de EPANET fueron difundidas desde la U. D. Mecánica de Fluidos, del Departamento de Ingeniería Hidráulica y Medio Ambiente de la Universidad Politécnica de Valencia, con el apoyo de cursos de formación para su manejo. Siguiendo el espíritu de la EPA, desde Febrero de 1997 en que dejé dicho grupo, la última versión 1.1e comenzó a ser distribuida gratuitamente, como lo siguen siendo las últimas versiones que ahora se ofrecen. Desde la aparición de la versión 2.0, ello ha sido posible gracias al apoyo y financiación recibidos por parte del Grupo Aguas de Valencia, S.A.

Durante el verano de 1997 tuve la gran oportunidad de colaborar con Lewis Rossman en la configuración y definición de las nuevas prestaciones que iba ofrecer la versión 2.0 del programa EPANET, gracias a una estancia de dos meses realizada en Cincinnati, financiada por la Consellería de Educación y Ciencia de la Generalitat Valenciana. Muchas de las mejoras que hoy pueden verse en la nueva versión fueron fruto de aquella colaboración.

Lo primero que destaca en la nueva versión es la incorporación de un entorno de edición gráfico para definir la red, así como una mejora notable de las salidas gráficas, todo ello reescrito de nuevo en el entorno Delphi, el cual ha venido a sustituir al Visual Basic empleado en la versión anterior. Ello obedece a varias razones, pero la más importante es la capacidad del nuevo entorno para manejar con soltura gráficos de redes complejas, que pueden llegar a incorporar varios miles de nudos (hemos trabajado con redes de hasta 40.000 nudos con la nueva versión sin dificultad). En general, la nueva interfaz gráfica goza de gran rapidez, al tiempo que ocupa menos memoria que la anterior, gracias a la potencia del entorno Delphi que permite compilar el módulo ejecutable en un lenguaje de bajo nivel, el cual es ejecutado directamente sin necesidad de intérprete (runtime). Otra de las razones que aconsejaba el uso

de Delphi era la mayor proximidad del lenguaje ObjectPascal utilizado por dicho entorno, al lenguaje C en que continúa redactado el módulo de cálculo.

Las principales mejoras introducidas en la nueva versión 2.0, tanto en lo que se refiere a la interfaz gráfica como al módulo de cálculo, han sido incorporadas al final del Capítulo 1, y pueden consultarse igualmente en la ayuda en línea de la aplicación. Todas estas mejoras han sido el fruto de una ingente labor realizada por su autor durante los últimos cinco años. El código fuente de la nueva versión de EPANET casi se ha triplicado, ocupando unas 50.000 líneas de programa, y en consecuencia, se ha incrementado también el volumen del presente Manual del Usuario.

Abordar la traducción de la nueva versión 2.0 de EPANET ha sido todo un reto, debido a la enorme cantidad de herramientas informáticas empleadas por el autor, al volumen de código implementado, las numerosas vías de comunicación con el usuario que presenta la aplicación, y el deseo por nuestra parte de realizar un trabajo profesional, como ya se hizo en las versiones anteriores.

La traducción al español de EPANET 2 que aquí se ofrece está actualizada, y se corresponde con la versión original más reciente, la **2.00.10**, aparecida en Julio de 2002. La primera versión española de EPANET 2 se realizó sobre la revisión 2.00.08, y fue lanzada en Julio de 2001. En todas las traducciones realizadas, se ha puesto un especial interés por mantener una compatibilidad total con la versión inglesa, tanto a nivel de ejecución como a nivel de datos, y se encuentren éstos en formato de fichero de texto o de fichero binario. Por consiguiente, no es necesario introducir ninguna modificación sobre los ficheros de datos desarrollados con la versión inglesa, para poder ejecutarlos con la versión española, y viceversa, cualquier fichero construido con la versión española puede ser ejecutado con la versión inglesa. Gracias a esta compatibilidad, es posible comprobar en cualquier momento la concordancia de resultados entre ambas versiones.

Además, en la reciente revisión 2.00.10 de la versión española se han introducido una serie de mejoras adiciones sobre la versión inglesa, como son:

- La adopción de las Unidades del Sistema Internacional (SI) por defecto, en todas las partes del programa, así como la fórmula de Darcy-Weisbach para el cálculo de las pérdidas. La adopción del SI afecta a las unidades de caudal por defecto (l/s), a los valores de las magnitudes mostradas en el diálogo de Valores por Defecto, y a los rangos por defecto de las leyendas.
- Se han convertido también al SI los datos correspondientes al ejemplo de la Guía Rápida, y al ejemplo Red1 que acompaña a la aplicación, el cual ha pasado a denominarse Red1_SI.net. No obstante, se han conservado las unidades convencionales US en el ejemplo original Red1, así como en los ejemplos Red2 y Red3 que representan redes reales.
- Se ha incorporado la coma como separador decimal, en sustitución del punto. Además, la versión española de EPANET 2.00.10 es sensible a la Configuración Internacional de Windows, de modo que puede actualizarse el separador decimal sin necesidad de cerrar la sesión de EPANET. Lo más importante es que el separador decimal es ahora reconocido correctamente cuando se transfieren datos a aplicaciones externas como Excel, cualquiera que sea la Configuración Internacional de Windows.
- La versión española de EPANET 2.00.10 puede ejecutarse en red y sobre S.O. con restricciones de permisos de escritura en ciertos directorios, como Windows 2000. En caso necesario, los ficheros auxiliares de cálculo y el fichero .ini se reubican automáticamente en un directorio local accesible al usuario.

- Cuando se realiza un análisis por primera vez con EPANET 2.00.10 en español, se asumen la presión en los nudos y el caudal en las líneas como magnitudes a visualizar por defecto.
- El Módulo de Herramientas de la versión española de EPANET 2.00.10 incorpora el código fuente de tres aplicaciones completas, basadas en los ejemplos ofrecidos en el fichero de Ayuda del mismo, y escritas en los lenguajes C++ Builder 5.0, Visual C++ 6.0, Delhi 5.0 y Visual Basic 6.0. Además se ofrecen instrucciones concretas al usuario para construir dichas aplicaciones desde cero, en los entornos de programación referidos.
- Finalmente, se ha incorporado una nueva función en el Módulo de Herramientas para detectar la conectividad de la red, ENconnected(), propuesta recientemente por su autor, y la cual no ha sido incorporada aún a la versión inglesa.

La traducción al español alcanza a todos los componentes que integran EPANET 2, a saber:

- El módulo de cálculo (librería .dll y fichero ejecutable en DOS)
- La interfaz gráfica y componentes Delphi
- La ayuda en línea
- El Manual del Usuario
- La ejemplos de aplicación
- La herramienta Toolkit para programadores y su ayuda en línea
- El instalador de la aplicación y ficheros auxiliares

La totalidad de documentos que componen la aplicación se pueden bajar libremente desde las siguientes páginas Web:

<u>www.redhisp.upv.es</u> (página del Grupo REDHISP de la Univ. Politécnica Valencia) <u>www.aguasdevalencia.es</u> (página principal Grupo Aguas de Valencia)

así como desde otros muchos enlaces ofrecidos por diferentes entidades públicas y privadas, asociaciones de estudiantes, etc.

En las páginas citadas el usuario podrá encontrar información actualizada de las futuras revisiones que vayan surgiendo, ya sea con motivo de cambios realizados en la versión original, o por otros desarrollos realizados a iniciativa propia.

Para cualquier problema, observación o consulta en torno al uso y difusión de la versión española de EPANET 2, los usuarios pueden dirigirse a la siguiente dirección:

Fernando Martínez Alzamora, Grupo de Redes Hidráulicas y Sistemas a Presión Instituto de Ingeniería del Agua y Medio Ambiente Universidad Politécnica de Valencia Apartado 22012 46080 VALENCIA (España) Tel: (34) 96 387 9610 Fax: (34) 96 387 9619 e-mail: fmartine@hma.upy.es

Deseo agradecer su apoyo a todos aquellos que me han ayudado en esta tarea. En particular a L. Rossman, por haberme facilitado el código fuente de la totalidad de los elementos que componen la nueva versión de EPANET 2, así como por su ayuda en la resolución de cuantas dudas me fueron surgiendo durante la labor de traducción, que fueron muchas. A Hugo Bartolín, becario del Grupo REDHISP, por su colaboración en la traducción de la ayuda en línea del programa y del Módulo de Herramientas, y a Vicente Bou, becario asimismo del grupo, por su auxilio en la resolución de diversos problemas de tipo informático ligados con la traducción.

Quiero por último manifestar, que el esfuerzo que ha supuesto esta traducción no hubiera sido posible sin el decidido apoyo y la financiación del **Grupo Aguas de Valencia**, quien desde siempre me ha respaldado en todas las iniciativas de colaboración propuestas desde mis comienzos en la Universidad. Gracias al Grupo Aguas de Valencia, todos los potenciales usuarios de EPANET de habla hispana pueden ahora disfrutar de forma totalmente gratuita de la versión española de EPANET 2, el programa de análisis de redes hidráulicas de mayor difusión en todo el mundo.

Fernando Martínez Alzamora Catedrático de Ingeniería Hidráulica

Valencia, 30 de Octubre de 2002

TABLA DE CONTENIDOS

CAP	ITULO 1 - INTRODUCCIÓN	1
1.1 1.2 1.3 1.4 1.5 1.6	Qué es EPANET Capacidades para la confección de Modelos Hidráulicos Capacidades para la confección de Modelos de Calidad del Agua Pasos para Utilizar EPANET Acerca del Manual Novedades de la Versión 2.0	1 2 3 3 5
CAP	ITULO 2 - GUIA RÁPIDA	9
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	INSTALACIÓN DE LA VERSIÓN ESPAÑOLA DE EPANET	9 10 11 12 14 16 16 18 20
CAP	ITULO 3 - EL MODELO DE LA RED	23
3.1 3.2 3.3 3.4	Componentes físicos Componentes No Físicos El Modelo de Simulación Hidráulica El Modelo de Simulación de la Calidad del Agua	23 31 37 37
CAP	ITULO 4 - EL ENTORNO DE TRABAJO DE EPANET	43
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	INTRODUCCIÓN LA BARRA DE MENÚS LAS BARRAS DE HERRAMIENTAS LA BARRA DE ESTADO EL ESQUEMA DE LA RED EL VISOR DE DATOS EL VISOR DEL ESQUEMA EL VISOR DEL ESQUEMA EL EDITOR DE PROPIEDADES PREFERENCIAS DEL PROGRAMA	43 44 48 49 50 51 51 52
	ADDR 1. CTD 1. ADDR NO DEL PROYECTO	55
5.1 5.2 5.3 5.4	ABRIR Y CERRAR ARCHIVOS DE PROYECTO VALORES POR DEFECTO DEL PROYECTO DATOS DE CALIBRACIÓN EL RESUMEN DEL PROYECTO	55 56 59 60
CAP	ITULO 6 - MANIPULACION DE OBJETOS	61
6.1 6.2 6.3 6.4 6.5 6.6	TIPOS DE OBJETOS AÑADIR OBJETOS SELECCIÓN DE OBJETOS EDICIÓN DE LOS OBJETOS VISIBLES EDICIÓN DE LOS OBJETOS NO VISIBLES COPIAR Y PEGAR OBJETOS	61 63 64 70 75

6.8	BORRAR UN OBJETO	77
6.9	MOVER UN OBJETO	77
6.10	SELECCIONAR UN GRUPO DE OBJETOS	77
6.11	EDITAR UN GRUPO DE OBJETOS	78
CAPI	TULO 7 - EL ESQUEMA DE LA RED	79
71	Seleccionar el Modo de Presentar el Esoliema	79
7.2	ESTABLECER LAS DIMENSIONES DEL ÁREA DE DIBUJO	
7.3	UTILIZACIÓN DE UN MAPA DE FONDO	
7.4	ACERCAR O ALEJAR EL ESQUEMA	82
7.5	DESPLAZAR EL ESQUEMA	82
7.6	BUSCAR UN OBJETO	83
7.7	LAS LEYENDAS DEL ESQUEMA	
7.8	VISTA GENERAL DEL ESQUEMA	
7.9	OPCIONES DE VISUALIZACION DEL ESQUEMA	85
CAPI	TULO 8 - ANÁLISIS DE LA RED	89
8.1	OPCIONES DE CÁLCULO	89
8.2	EJECUTAR UNA SIMULACIÓN	94
8.3	RESOLUCIÓN DE PROBLEMAS	94
CAPI	TULO 9-PRESENTACIÓN DE RESULTADOS	97
9.1	PRESENTACIÓN DE LOS RESULTADOS SOBRE EL ESQUEMA	
9.2	PRESENTACIÓN DE LOS RESULTADOS MEDIANTE GRÁFICAS	
9.3	PRESENTACIÓN DE LOS RESULTADOS MEDIANTE TABLAS	107
9.4	INFORMES ESPECIALES	110
CAPI	TULO 10 - IMPRIMIR Y COPIAR	115
10.1	Selección de la Impresora	115
10.2	FORMATO DE LA PÁGINA	
10.3	VISTA PREVIA DE LA PÁGINA	116
10.4	IMPRIMIR LA VENTANA ACTUAL	116
10.5	COPIAR AL PORTAPAPELES O A UN FICHERO	117
CAPI	Τυμο 11 - ΙΜΡΟΚΤΑCΙΟΝ Υ ΕΧΡΟΚΤΑCΙΟΝ	119
11.1	ESCENARIOS DE UN PROYECTO	119
11.2	EXPORTACIÓN DE UN ESCENARIO	119
11.3	IMPORTACIÓN DE UN ESCENARIO	120
11.4	IMPORTACIÓN PARCIAL DE UNA RED	120
11.5	IMPORTACIÓN DEL ESQUEMA DE UNA RED	
11.6	EXPORTACION DEL ESQUEMA DE UNA RED	122
11./		123
CAPI	TULO 12 - PREGUNTAS MAS FRECUENTES	
APEN	DICE A - UNIDADES DE MEDIDA	129
A P É N	DICE B - MENSAJES DE ERROR	131
A P É N	DICE C-EJECUCIÓN DE EPANET EN MODO COMANDO	133
C.1	INSTRUCCIONES GENERALES	133
C.2	FORMATO DEL FICHERO DE ENTRADA	133
C.3	FORMATO DEL FICHERO DE INFORME DE RESULTADOS	171
C.4	FORMATO DEL FICHERO DE SALIDA BINARIO	174
A P É N	DICE D - ALGORITMOS DE CÁLCULO	179
D.1	ANÁLISIS HIDRÁULICO	179
D.2	ANÁLISIS DE LA CALIDAD DEL AGUA	
D.3	KEFERENCIAS	191

1.1 Qué es EPANET

EPANET es un programa de ordenador que realiza simulaciones en periodos prolongados del comportamiento hidráulico y de la calidad del agua en redes de suministro a presión. Una red puede estar constituida por tuberías, nudos (uniones de tuberías), bombas, válvulas y depósitos de almacenamiento o embalses. EPANET efectúa un seguimiento de la evolución de los caudales en las tuberías, las presiones en los nudos, los niveles en los depósitos, y la concentración de las especies químicas presentes en el agua, a lo largo del periodo de simulación discretizado en múltiples intervalos de tiempo. Además de la concentración de las distintas especies, puede también simular el tiempo de permanencia del agua en la red y su procedencia desde las diversas fuentes de suministro.

EPANET se ha concebido como una herramienta de investigación para mejorar nuestro conocimiento sobre el avance y destino final de las diversas sustancias transportadas por el agua, mientras ésta discurre por la red de distribución. Entre sus diferentes aplicaciones puede citarse el diseño de programas de muestreo, la calibración de un modelo hidráulico, el análisis del cloro residual, o la evaluación de las dosis totales suministradas a un abonado. EPANET puede resultar también de ayuda para evaluar diferentes estrategias de gestión dirigidas a mejorar la calidad del agua a lo largo del sistema. Entre estas pueden citarse:

- alternar la toma de agua desde diversas fuentes de suministro
- modificar el régimen de bombeo, o de llenado y vaciado de los depósitos
- implantar estaciones de tratamiento secundarias, tales como estaciones de recloración o depósitos intermedios
- establecer planes de limpieza y reposición de tuberías.

EPANET proporciona un entorno integrado bajo Windows, para la edición de los datos de entrada a la red, la realización de simulaciones hidráulicas y de la calidad del agua, y la visualización de resultados en una amplia variedad de formatos. Entre éstos se incluyen mapas de la red codificados por colores, tablas numéricas, gráficas de evolución y mapas de isolíneas.

1.2 Capacidades para la confección de Modelos Hidráulicos

Dos de los requisitos fundamentales para poder construir con garantías un modelo de la calidad del agua son la potencia de cálculo y la precisión del modelo hidráulico utilizado. EPANET contiene un simulador hidráulico muy avanzado que ofrece las siguientes prestaciones:

- no existe límite en cuanto al tamaño de la red que puede procesarse
- las pérdidas de carga pueden calcularse mediante las fórmulas de Hazen-Williams, de Darcy-Weisbach o de Chezy-Manning
- contempla pérdidas menores en codos, accesorios, etc.
- admite bombas de velocidad fija o variable
- determina el consumo energético y sus costes

- permite considerar varios tipos de válvulas, tales como válvulas de corte, de retención, y reguladoras de presión o caudal.
- admite depósitos de geometría variable (esto es, cuyo diámetro varíe con el nivel)
- permite considerar diferentes tipos de demanda en los nudos, cada uno con su propia curva de modulación en el tiempo
- permite modelar tomas de agua cuyo caudal dependa de la presión (p.ej. rociadores)
- admite leyes de control simples, basadas en el valor del nivel en los depósitos o en la hora prefijada por un temporizador, y leyes de control más complejas basadas en reglas lógicas.

1.3 Capacidades para la confección de Modelos de Calidad del Agua

Además de la confección de modelos hidráulicos, EPANET ofrece las siguientes prestaciones para la confección de modelos de calidad:

- simula el desplazamiento de trazadores no reactivos por toda la red, a lo largo del tiempo
- simula el avance y destino final de las sustancias reactivas cuya concentración o bien crece en el tiempo (p.ej. los subproductos derivados de la desinfección) o bien decrece (p.ej. el cloro residual)
- simula el tiempo de permanencia (o envejecimiento) del agua mientras discurre por la red
- permite seguir la evolución en el tiempo de la fracción de caudal que llega a cada nudo de la red procedente de un nudo determinado (análisis de procedencias)
- simula las reacciones que tienen lugar tanto en el seno del agua como en las paredes de las tuberías
- permite emplear cinéticas de orden n para modelar las reacciones en el seno del agua
- emplea cinéticas de orden cero o de primer orden para modelar las reacciones en las paredes de las tuberías
- tiene en consideración las limitaciones de transferencia de masa al modelar las reacciones en las paredes de las tuberías
- admite reacciones de crecimiento o decrecimiento de la concentración de una sustancia hasta llegar a un valor límite
- permite definir coeficientes de reacción globales para toda la red, y modificar éstos posteriormente para determinadas tuberías
- permite correlacionar los coeficientes de velocidad de reacción en la pared de las tuberías con su rugosidad
- permite considerar la inyección en cualquier punto de la red de un caudal másico o de concentración definida, variable en el tiempo
- la evolución de la calidad del agua en los depósitos puede simularse como una mezcla homogénea, mediante un modelo de pistón, o como un reactor de dos compartimentos.

Mediante estas prestaciones, EPANET permite estudiar fenómenos relacionados con la calidad del agua tales como:

- la mezcla de agua procedente de diversas fuentes
- el envejecimiento del agua mientras discurre por la red
- la pérdida de cloro residual
- el crecimiento de los subproductos derivados de la cloración
- el seguimiento del avance de un contaminante, tras su intrusión en la red.

1.4 Pasos para Utilizar EPANET

Los pasos a seguir normalmente para modelar un sistema de distribución de agua con EPANET son los siguientes:

- 1. Dibujar un esquema de la red de distribución (ver Apartado 6.2) o importar una descripción básica del mismo desde un fichero de texto (ver Apartado 11.4).
- **2.** Editar las propiedades de los objetos que configuran el sistema (ver Apartado 6.4)
- 3. Describir el modo de operación del sistema (ver Apartado 6.5)
- 4. Seleccionar las opciones de cálculo (ver Apartado 8.1)
- Realizar el análisis hidráulico o de calidad del agua (ver Apartado 8.2)
- 6. Observar los resultados del análisis (ver Capítulo 9).

1.5 Acerca del Manual

El Capítulo 2 de este manual describe cómo se instala EPANET y ofrece una guía didáctica sobre su uso. Los lectores que no estén familiarizados con los fundamentos del modelado de la redes de distribución de agua, pueden consultar el Capítulo 3 antes de entrar en la guía.

El Capítulo 3 proporciona información más detallada sobre cómo se modelan las redes de distribución de agua con EPANET. Se discute el comportamiento de los componentes físicos que constituyen la red y las peculiaridades de la información complementaria que hay que proporcionar al modelo, tales como las curvas de modulación y las leyes de control. También ofrece una visión general sobre cómo se lleva a cabo la simulación numérica del comportamiento hidráulico y de la calidad del agua.

En el Capítulo 4 se muestra cómo está organizado el espacio de trabajo de EPANET. Se describen las funciones de las distintas opciones de menú y botones de las barras de herramientas, así como el uso de las tres ventanas principales de la aplicación: el Esquema de la Red, el Visor y el Editor de Propiedades.

El Capítulo 5 versa sobre los ficheros asociados a un proyecto, los cuales almacenan toda la información contenida en un modelo de EPANET de una red de distribución de agua. Se muestra cómo crear, abrir y guardar estos ficheros, y también cómo establecer las opciones por defecto del proyecto. Se indica

asimismo la forma de registrar los ficheros de datos de calibración, los cuales serán utilizados posteriormente para contrastar los resultados de la simulación con las medidas de campo.

En el Capítulo 6 se describe la forma de construir el modelo de una red de distribución de agua con EPANET. Se muestra cómo crear los diferentes componentes físicos que configuran el sistema (tuberías, bombas, válvulas, nudos de caudal, depósitos, etc), cómo editar sus propiedades, y cómo configurar el modo en que las demandas del sistema y el estado de los elementos de regulación de la red van a cambiar con el tiempo.

El Capítulo 7 explica cómo utilizar el esquema de la red, el cual representa de forma gráfica el sistema a simular. Se pasa revista a las formas de visualizar los distintos parámetros de diseño o resultados sobre el esquema mediante códigos de colores, a las operaciones de reescalado, acercamiento o alejamiento del esquema, la localización de objetos sobre el mapa, así como a todas las opciones disponibles para personalizar la apariencia del esquema.

El Capítulo 8 muestra cómo realizar un análisis hidráulico o de la calidad del agua. Se describen las distintas opciones que permiten controlar el modo de efectuar los cálculos y se ofrecen algunas pistas para la interpretación de fallos al examinar los resultados.

En el Capítulo 9 se discuten otras formas de analizar los resultados de una simulación. Entre ellas se incluyen diferentes vistas del esquema de la red, distintos tipos de gráficos y tablas, y diversos informes específicos.

El Capítulo 10 explica cómo imprimir y copiar las distintas formas de visualizar los resultados, discutidas en el Capítulo 9.

El Capítulo 11 describe cómo EPANET puede importar y exportar escenarios de proyecto. Un escenario es un subconjunto de datos que caracteriza las condiciones actuales bajo las cuales se está analizando la red (p.ej. demandas de los usuarios, leyes de operación, coeficientes de reacción de las sustancias químicas en el agua, etc). También se muestra cómo guardar todos los datos que configuran la base de datos del proyecto en un fichero de texto editable y cómo exportar el esquema de la red en diversos formatos.

En el Capítulo 12 se responde a una serie de cuestiones relativas a la forma de utilizar EPANET para modelar ciertas situaciones de interés práctico, como la presencia de un calderín hidroneumático, la determinación del caudal máximo extraíble en un nudo bajo unas condiciones de presión dadas, o la simulación del crecimiento de los subproductos derivados de la cloración.

Este manual contiene también algunos apéndices. El Apéndice A proporciona una tabla con las unidades utilizadas para expresar todos los parámetros de diseño y variables calculadas. El Apéndice B es una lista de códigos de mensajes de error que puede emitir el programa, junto con su significado. El Apéndice C muestra cómo EPANET se puede utilizar en modo comando desde una ventana DOS, y se discute el formato de los ficheros a utilizar bajo este modo de operación. Finalmente, el Apéndice D ofrece detalles de los procedimientos y fórmulas utilizados por EPANET en los algoritmos de cálculo, tanto hidráulicos como de calidad.

1.6 Novedades de la Versión 2.0

La versión 2.0 de EPANET ha supuesto un notable avance respecto a la versión anterior 1.1. Entre las mejoras introducidas en la **interfaz** del usuario cabe destacar:

- 1. Se ha implementado un Entorno de Edición Gráfico que permite añadir y modificar elementos directamente sobre el esquema de red.
- 2. Se han implementado también Editores Especiales que facilitan la introducción de datos para la definición de las propiedades de nudos y líneas, las demandas en los nudos de caudal, los factores de las curvas de modulación, las curvas características de bombas y curvas de comportamiento especiales, las leyes de control y las opciones de cálculo.
- 3. Se ha creado una nueva funcionalidad para la Edición en Grupo, que permite al usuario seleccionar objetos mediante un cercado irregular y aplicar operaciones de edición para el conjunto seleccionado, como por ejemplo "Para todas las tuberías con una etiqueta igual a CLASE-A, reemplazar su rugosidad por el valor 0,1".
- 4. Se puede activar la opción Etiquetas Flotante para mostrar en una caja de texto el ID del nudo/línea, junto al valor de la magnitud analizada, con sólo situar el cursor encima del elemento deseado.
- 5. Las etiquetas flotantes pueden convertirse en Cajas de Texto Permanentes para algunos elementos claves de la red, y observar en ellas la evolución de los resultados numéricos correspondientes.
- 6. Se pueden realizar Consultas sobre el esquema de la red, para identificar y localizar aquellos nudos o líneas que cumplan una condición definida por el usuario. Por ejemplo, se puede realizar una consulta que resalte todos los nudos en los cuales la presión esté por debajo de 20 m, y que oculte el resto.
- 7. El trazado de las tuberías puede definirse mediante polilíneas con vértices intermedios, para ajustar mejor el esquema de la red a la realidad.
- 8. Se han ampliado las Capacidades para la visualización de los resultados (y de algunos datos) sobre el esquema de la red, permitiendo entre otras opciones, que el tamaño de los nudos o el grosor de las líneas sea proporcional al valor de la magnitud observada, ocultar los símbolos, flechas y etiquetas a partir de una cierta escala, o mostrar una imagen de fondo (p. ej. un mapa de calles) detrás del esquema de la red.
- 9. También se ofrece la posibilidad de realizar una Animación, mostrando sobre el esquema de la red los valores instantáneos de la variable elegida codificados por colores, con funciones de pausa, rebobinado, marcha atrás y control de la velocidad de animación.
- 10. Se pueden generar Informes de Energía, con un listado del consumo energético y el coste para todas las bombas del sistema.

- 11. Se pueden generar Informes de Reacciones en los que se pone de manifiesto, del total de reacciones que afectan a la calidad del agua, la fracción que corresponde a reacciones en el seno del fluido, a reacciones con las paredes de las tuberías y a reacciones en los depósitos de regulación.
- 12. También es posible generar Informes de Calibración para evaluar estadísticamente la bondad de ajuste del modelo, con respecto a los datos medidos.
- 13. Las salidas gráficas se han potenciado enormemente. Se mantienen las Curvas de Evolución y los Mapas de Isolíneas con algunas mejoras, y se añade la posibilidad de trazar Perfiles Longitudinales, así como Curvas de Distribución para cualquier magnitud elegida. Además puede generarse una curva que representa el Balance de Caudales entre producción y consumo, a lo largo del periodo de simulación.
- 14. Las Curvas de Evolución permiten superponer ahora el comportamiento de varios nudos o líneas sobre la misma gráfica.
- 15. Las posibilidades de personalizar todas estas curvas se han incrementado de forma significativa, al objeto de mejorar la calidad de su presentación.
- 16. En esta nueva versión, el usuario puede elegir el formato de salida de las tablas de datos, teniendo la oportunidad de añadir y eliminar columnas de variables según se desee, ordenar las columnas según la variable seleccionada y emplear filtros para seleccionar los datos que aparecerán en la tabla.
- 17. El usuario puede establecer ahora el número de decimales con que se mostrará cada una de las variables calculadas, en todas las salidas de resultados.
- 18. El conjunto de informes, gráficos y tablas mediante los cuales se están analizando los resultados de los cálculos, se actualizan automáticamente tras realizar un nuevo análisis de la red.
- 19. El esquema de red puede guardarse en un fichero con formato .DXF, formato Metafile mejorado de Windows o como fichero de texto ASCII (coordenadas de los nudos y de los vértices de las líneas).
- 20. Las Gráficas pueden guardarse en un fichero o ser copiadas al portapapeles de Windows como bitmaps, metaficheros o datos ASCII.
- 21. Se han incorporado las funciones de Configurar página y Vista preliminar.
- 22. Es posible guardar y cargar diferentes Escenarios de Simulación en el proyecto, para actualizar de golpe todos los valores de algunas variables que configuran los datos de la red, como las demandas, la calidad inicial del agua, la rugosidad de las tuberías, los coeficientes de reacción, las leyes de control, etc.

En EPANET 2.0 no solo se ha mejorado la interfaz gráfica, sino también sus **capacidades de cálculo**. Las principales mejoras introducidas en el módulo de cálculo son las siguientes:

- Se ha desarrollado un nuevo formato de fichero de entrada (fichero .NET) para trabajar de forma más eficiente con la nueva interfaz de usuario. Se trata de un fichero binario que el usuario no tiene que editar directamente. Los ficheros de texto de la versión anterior 1.1 (ficheros .INP), todavía pueden ser utilizados, ya que se pueden abrir y modificar, al tiempo que proporcionan una copia legible de los datos de entrada de la red.
- 2. Los Identificativos (IDs) utilizados para identificar objetos de la red ya no tienen que ser necesariamente números. Ahora pueden contener cualquier combinación de letras y números, hasta 15 caracteres.
- 3. Se ha introducido un nuevo elemento denominado Embalse, para distinguirlo de los depósitos de regulación. Se puede asignar una curva de modulación a la cota de lámina del embalse (o a su altura piezométrica) para imponer la variación temporal de la misma como condición de contorno.
- 4. Se ha incluido un nuevo tipo de objeto, las Curvas de comportamiento, las cuales permiten establecer relaciones entre dos variables del sistema.
- 5. Se puede definir ahora la curva característica de una bomba mediante múltiples puntos, y también asignar a éstas una curva de modulación para controlar el estado o la velocidad de las mismas.
- 6. En la nueva versión es posible también evaluar el consumo de energía de una bomba y estimar su coste energético considerando la variación horaria del coste de la energía. Para el cálculo puede definirse una curva de rendimiento para cada bomba y una curva de variación horaria de las tarifas eléctricas o bien establecer unos valores por defecto. La libertad para introducir la modulación de las tarifas eléctricas está en consonancia con la liberalización del mercado eléctrico. Además la aplicación genera un informe completo sobre los costes energéticos.
- 7. Otro aspecto a destacar es la posibilidad de modelar depósitos no cilíndricos mediante la declaración de la curva de cubicación que relaciona el volumen almacenado con el nivel del agua en el mismo.
- 8. Es posible también asignar a los nudos de consumo múltiples categorías de demanda (demanda base + curva de modulación).
- 9. Las sentencias de control de la versión anterior se denominan ahora Leyes de Control Simples y se han ampliado sus propiedades para permitir el control del estado de una línea en base a la hora real del día.
- 10. Se ha incorporado una nueva categoría de controles, denominada Leyes de Control basadas en Reglas, que permiten controlar el estado de una línea en base a una combinación de condiciones dadas.
- 11. Se ha añadido la opción de poder localizar en cada nudo de consumo un Emisor (para simular un orificio, un hidrante o un aspersor). En estos dispositivos se considera que el flujo de salida es función de la presión disponible. Ver Propiedades de los Nudos de Caudal y Emisores.

- 12. Mediante las nuevas Válvulas de Propósito General, se pueden modelar elementos cuyo comportamiento obedezca a una curva pérdidas-caudal definida por el usuario, en sustitución de las fórmulas de pérdidas convencionales.
- 13. Se han añadido mejoras en la detección y tratamiento de los problemas relacionados con la desconexión de una parte del sistema o la imposibilidad de alcanzar el equilibrio hidráulico en algún instante de la simulación.
- 14. El método de cálculo de la calidad del agua ha sido reemplazado por otro más eficiente basado en un método Lagrangiano . Los parámetros a suministrar ahora por el usuario son el intervalo de tiempo para el análisis de la calidad del agua y la tolerancia en la variación del parámetro de calidad.
- 15. La intensidad de las fuentes contaminantes puede declararse ahora en términos de concentración o de caudal másico para sistemas de inyección, o bien en términos de incremento de la concentración para sistemas de reinyección.
- 16. Las reacciones en el seno del fluido pueden modelarse ahora con cinéticas de orden n, y también mediante cinéticas de Michaelis-Menton para modelar el crecimiento biomolecular o de enzimas.
- 17. Las reacciones con las paredes de las tuberías pueden modelarse con cinéticas de orden 0 ó cinéticas de primer orden.
- 18. Puede también modelarse el crecimiento o decaimiento hasta un potencial límite de algunas sustancias contenidas en el agua.
- 19. Los coeficientes de reacción con las paredes de las tuberías pueden correlacionarse con los coeficientes de rugosidad de las mismas.
- 20. Se dispone de varios modelos diferentes para caracterizar los procesos de mezcla en los depósitos de regulación.
- 21. Los resultados de la simulación en período extendido pueden presentarse como curvas de evolución, como valores promediados en el tiempo para cada nodo y línea de la red, o mediante sus valores máximos, mínimos o rangos de variación.
- 22. Se pueden obtener informes de calibración con estadísticas comparativas entre los valores simulados y los valores medidos.

Este capítulo ofrece una guía rápida para la utilización de EPANET. Si no está familiarizado con los elementos que componen un sistema de distribución de agua, y cómo éstos se representan para configurar el modelo de la red, es conveniente que repase antes los dos primeros apartados del Capítulo 3.

2.1 Instalación de la versión española de EPANET

La Versión 2 de EPANET está diseñada para trabajar bajo los sistemas operativos Microsoft[®] Windows 95/98/NT en ordenadores personales compatibles IBM/Intel[®]. La traducción al español de esta versión se distribuye en un solo fichero, **EN2inst_esp.exe**¹, el cual contiene un programa de instalación auto-extraíble. Para instalar la versión española de EPANET:

- 1. Seleccionar Ejecutar.... desde el Menú de Inicio de Windows.
- Introducir la ruta completa y el nombre del fichero EN2inst_esp.exe, o bien pulsar el botón Examinar para localizarlo en su ordenador.
- 3. Pulsar el botón Aceptar para comenzar el proceso de instalación.

El programa de instalación le preguntará que elija una carpeta (directorio) para ubicar los ficheros de EPANET. La carpeta por defecto es c:\Archivos de programa\EPANET2_Esp. Finalizada la instalación, en el *Menú de Inicio* aparecerá una nueva entrada denominada *EPANET 2.0 Esp.* Para ejecutar EPANET simplemente seleccionar esta entrada, y a continuación la opción *EPANET 2.0 Español* del submenú mostrado. (El nombre del fichero ejecutable que lanza la versión española de EPANET bajo Windows es *epanet2w_esp.exe.*)

Para eliminar la versión española de EPANET de su ordenador, se recomienda seguir el siguiente procedimiento:

- 1. Seleccionar Configuración... del Menú de Inicio de Windows.
- 2. Seleccionar **Panel del Control** del menú de elementos configurables.
- 3. Efectuar una doble pulsación sobre el icono Añadir o quitar programas.
- 4. Seleccionar *EPANET 2.0 Esp* de la lista de programas ofrecida.
- 5. Pulsar el botón Agregar o quitar...
- **Nota.** La versión española de EPANET es totalmente compatible con la original en inglés a todos los efectos. Ambas pueden coexistir y pueden ejecutar los mismos ficheros de datos. (NdT)

¹ La versión española de todos los ficheros traducidos se caracteriza por la terminación _esp añadida al nombre del fichero (NdT)

2.2 Red de Ejemplo

A lo largo de esta guía analizaremos la red de distribución sencilla mostrada en la figura 2.1. Consta de un depósito de nivel constante (p. ej. la galería de agua filtrada de una planta de tratamiento de agua potable), desde el cual se bombea el agua a la red de distribución, configurada por dos mallas. En el extremo opuesto hay un depósito elevado de compensación, conectado a la red a través de una tubería única. Los identificativos de cada uno de los elementos de la red se indican en la figura. Las características de los nudos se detallan en la Tabla 2.1, y las de las tuberías en la Tabla 2.2. Además, se sabe que la bomba (línea 9) puede comunicar una altura de 45 m a un caudal de 42 l/s. El depósito elevado (Nudo 8) tiene un diámetro de 20 m, el nivel inicial del agua en el mismo es de 1 m y el nivel máximo permitido de 6 m ⁽²⁾.

Figura 2.1 Red de Ejemplo

Nudo	Cota (m)	Demanda (l/s)
1	210	0
2	210	0
3	215	10
4	210	10
5	200	15
6	210	10
7	210	0
8	250	0

Tabla 2.1 Propiedades de los Nudos de la Red Ejemplo⁽²⁾

Tabla 2.2	Propiedades	de las Tuberías	de la Red Ejemplo ⁽²⁾
	1		J 1

Tubería	Longitud (m)	Diámetro (mm)	Rugosidad (mm)
1	1000	350	0,01
2	1500	300	0,01
3	1500	200	0,01
4	1500	200	0,01
5	1500	200	0,01
6	2000		0,01
7	1500		0,01
8	2000		0,01

² Los datos del ejemplo de la versión original han sido convertidos y redondeados a unidades SI, de acuerdo con las equivalencias mostradas a pie de página del Apéndice A. En consecuencia, algunos resultados pueden diferir ligeramente de los de la versión inglesa (NdT).

2.3 Configuración del Proyecto

El primer paso va a ser crear un nuevo proyecto en EPANET y comprobar que las opciones por defecto son las deseadas. Para comenzar el ejercicio, lanzar EPANET si no está ya en ejecución, y seleccionar en la barra de menús la opción Archivo >> Nuevo para crear un nuevo proyecto. A continuación seleccionar **Proyecto** >> Valores por Defecto para abrir el diálogo mostrado en la Figura 2.2. Utilizaremos este diálogo para dejar que EPANET ponga el identificativo automáticamente a los nuevos objetos a medida que son añadidos a la red, asignándoles números consecutivos a partir del 1. Para ello, en la página del diálogo etiquetada con *Identificativos ID*, borrar todos los prefijos y fijar el Incremento ID en 1. A continuación seleccionar la página de Opc. Hidráulicas del mismo diálogo y elegir la opción LPS (litros por minuto) para las Unidades de Caudal. Ello conlleva que las unidades métricas SI serán utilizadas también para las restantes magnitudes (longitudes en metros, diámetros de tubería en mm, presiones en mca, etc). Seleccionar igualmente la Fórmula de Darcy-Weisbach (D-W) para el cálculo de las pérdida de carga. Si se desea guardar todas estas opciones para futuros proyectos, validar la casilla Guardar Valores por Defecto para futuros proyectos que figura al pie del diálogo, antes de asumirlas definitivamente con el botón Aceptar.

Identificativos ID Propi	edades Opc. Hidráulicas			
Objeto	Prefijo ID			
Nudos de Caudal				
Embalses				
Depósitos				
Tuberías				
Bombas				
Válvulas				
Curvas Modulación				
Curvas Comportamiento				
Incremento ID	1			
🔲 Guardar Valores por Defecto para futuros proyetos				

Figura 2.2 Diálogo de Valores por Defecto para todo el Proyecto

A continuación seleccionaremos algunas opciones relativas a la visualización del esquema, de modo que al añadir objetos al mismo podamos ver sus símbolos e identificativos inmediatamente. Para abrir el diálogo *Opciones del Esquema*, seleccionar **Ver** >> **Opciones** del Menú Principal. Seleccionar ahora la página *Etiquetas* de dicho diálogo y habilitar las opciones mostradas en la figura 2.3.

Opciones del Esquema	X
Nudos	Mostrar ID Nudos
Líneas	🗖 Mostrar Valores en Nudos
Bótulos	Mostrar ID Líneas
	🔲 Mostrar Valores en Líneas
Etiquetas	🗖 Usar Textos Transparentes
Símbolos	Escala Mínima 🛛 100 婁
Flechas	Tamaña Euseta 🔽 🔺
Fondo	
Aceptar	Cancelar <u>A</u> yuda

Figura 2.3 Diálogo de Opciones del Esquema de la Red

A continuación pasar a la página *Símbolos* y habilitar todas las opciones. Pulsar finalmente el botón **Aceptar** para ratificar todas las opciones y cerrar el diálogo.

Finalmente, antes de dibujar nuestra red deberemos comprobar que la escala fijada para el esquema es adecuada. Seleccionar **Ver** >> **Dimensiones** en el Menú Principal para abrir el diálogo *Dimensiones del Área de Dibujo*, y observar las coordenadas asignadas por defecto para el área de trazado de la red del nuevo proyecto. Admitiremos que son suficientes para este ejemplo, de modo que pulsaremos el botón **Aceptar**.

2.4 Dibujo de la Red

Estamos ahora en disposición de construir la red haciendo uso del ratón y de los botones de la *Barra de Herramientas del Esquema*, la cual se muestra a continuación (si la Barra no estuviera visible, seleccionar Ver >> Barra Herramientas >> Esquema).

Primero que nada añadiremos la galería de agua filtrada. Pulsar el botón *Añadir Embalse*, y a continuación fijar con el ratón su posición sobre el área de dibujo (en la zona izquierda).

Ahora añadiremos los nudos de caudal. Pulsar el botón *Añadir Nudo de Caudal* y marcar con el ratón sobre el área de dibujo las posiciones de los nudos 2 a 7.

Finalmente añadir el depósito pulsando el botón *Añadir Depósito* y marcando sobre el área de dibujo su posición con el ratón. En este momento el Esquema de la Red debe asemejarse al mostrado en la figura 2.4. Observar cómo

los identificativos se generan automáticamente y de forma secuencial conforme se van añadiendo objetos a la red.

Figura 2.4 Esquema de la red después de añadir los Nudos

A continuación añadiremos las tuberías. Comenzaremos con la tubería 1, que conecta los nudos 2 y 3. Primeramente pulsar el botón *Añadir Tubería* de la Barra de Herramientas. A continuación pulsar con el ratón el nudo 2 del esquema, y seguidamente el nudo 3. Mientras se desplaza el ratón del nudo 2 al 3 se observará un trazado provisional de la tubería. Repetir el mismo procedimiento para las tuberías 2 a 7.

A diferencia de las anteriores, la tubería 8 está curvada. Para dibujarla pulsar con el ratón primero sobre el nudo 5. A continuación, mientras se desplaza el ratón hacia el nudo 6, pulsar en aquellos puntos en los que se requiera un cambio de dirección para darle a la tubería el trazado deseado. El proceso se completa pulsando sobre el nudo 6.

Finalmente, añadiremos la bomba. Pulsar el botón *Añadir Bomba* , continuación marcar con el ratón el nudo 1, y seguidamente el nudo 2.

Para finalizar el dibujo de la red añadiremos tres rótulos descriptivos para identificar la galería, la bomba y el depósito. Seleccionar el botón *Añadir Texto*

T de la Barra de Herramientas del Esquema, y pulsar en un punto cerca del embalse (Nudo 1). Aparecerá en seguida una caja de texto. Introducir la palabra FUENTE SUM. y pulsar la tecla **Intro**. Pulsar a continuación en otro punto cerca de la bomba e introducir el rótulo correspondiente, y hacer lo mismo para el

depósito. Finalmente, pulsar el botón *Seleccionar Objeto* de la Barra de Herramientas para dejar el esquema en el modo *Seleccionar Objetos* en lugar del modo *Insertar Texto*.

En este momento habremos completado el dibujo de la red ejemplo. El *Esquema de la Red* debe mostrar una apariencia como la de la Figura 2.1 Si los nudos no hubieran quedado bien situados, pueden desplazarse pulsando sobre el nudo con el botón izquierdo del ratón dos veces, la primera para seleccionarlo liberando el botón, y la segunda para arrastrarlo hasta su nueva posición sin soltar el botón del

ratón. Observar cómo las tuberías conectadas al nudo se mueven con él. Los rótulos pueden también reposicionarse de modo similar. Para modificar el trazado de la tubería 8 proceder del siguiente modo:

- Pulsar primero con el ratón sobre la tubería 8 para seleccionarla, y a continuación pulsar el botón b de la Barra de Herramientas para poner el Esquema en el modo *Seleccionar Vértice*.
- 2. Seleccionar un vértice sobre la tubería pulsando sobre él con el ratón dos veces, la primera para seleccionarlo y la segunda para arrastrarlo hasta su nueva posición, manteniendo el botón del ratón pulsado.
- **3.** Si fuera necesario, se pueden añadir o borrar vértices de la tubería pulsando el botón derecho del ratón y eligiendo la opción adecuada del menú emergente.
- 4. Al terminar, pulsar el botón para volver al modo *Seleccionar Objeto*.

2.5 Introducción de las Propiedades de los Objetos

A medida que los objetos son añadidos al proyecto, éstos adquieren automáticamente las propiedades por defecto. Para cambiar el valor de una propiedad determinada de un objeto, éste debe seleccionarse antes con el *Editor de Propiedades* (figura 2.5). Existen diversas formas de hacerlo. Si el Editor ya está visible, bastará pulsar sobre el objeto elegido o seleccionarlo desde la página de *Datos del Visor*. Si el Editor no está visible, se puede abrir de alguna de las siguientes maneras:

Nudo de Caudal 2	×
Propiedad	Valor
*ID Nudo de Caudal	2 🔺
Coordenada X	1184,28 -
Coordenada Y	7908,28
Descripción	
Etiqueta	
*Cota	210
Demanda Base	0
Curva Modul. Demanda	
Tipos de Demanda	1
Coeficiente del Emisor	
Calidad Inicial	
Intensidad de la Fuente	•

Figura 2.5 El Editor de Propiedades

- Efectuando una doble pulsación con el ratón sobre el objeto en el esquema.
- Pulsando el botón derecho del ratón sobre el objeto y eligiendo la opción **Propiedades** del menú emergente.
- Seleccionando el objeto desde el Visor de Datos, y pulsando sobre el botón

Editar de dicha ventana (o bien efectuando una doble pulsación sobre el mismo).

Una vez seleccionado el objeto sobre el *Editor de Propiedades*, pulsando la tecla F1 se obtiene una descripción completa de todas las propiedades listadas.

Vamos a comenzar la edición seleccionando el nudo 2 sobre el Editor de Propiedades, tal como se ha descrito antes. Introduciremos ahora la *Cota* y la *Demanda Base* de este nudo (ver Tabla 2.1) en los campos apropiados. Para movernos de un campo a otro se pueden utilizar las flechas **Arriba** y **Abajo** del teclado o bien el ratón. Basta ahora pulsar sobre otro objeto (nudo o línea) para que sus propiedades aparezcan en el Editor de Propiedades. (También se pueden utilizar las teclas **AvPág** y **RePág** para pasar al objeto del mismo tipo inmediatamente anterior o posterior en la base de datos). De este modo nos iremos desplazando de un objeto a otro, rellenando la *Cota* y la *Demanda Base* en el caso de los nudos, y.

Para la galería de agua filtrada (Nudo 1), habrá que introducir su cota (210 m) en el campo *Altura Total*. Para el depósito (Nudo 8) introduciremos como *Cota de Solera* 250 m, como *Nivel Inicial* 1 m, como *Nivel Mínimo* 0 m, como *Nivel Máximo* 6 m y como *Diámetro* 20 m. En el caso de la bomba, necesitaremos asignarle una curva característica (o relación altura – caudal), para lo cual introduciremos el identificativo 1 en el campo correspondiente a la *Curva Característica*.

Siguiendo el mismo procedimiento utilizado para los nudos, pulsaremos sobre cada una de las tuberías (o bien utilizaremos las teclas **AvPág** y **RePág** para movernos de una tubería a otra) al objeto de introducir sus propiedades a través del Editor de Propiedades, en particular la *Longitud*, *Diámetro* y *Rugosidad* (factor ε de D-W) (ver Tabla 2.2).

En el caso de la bomba, es necesario asignarle una curva característica (relación altura - caudal) que defina su comportamiento. Seleccionar la bomba (Línea 9) en el Editor de Propiedades e introducir el *Identificativo 1* en el campo correspondiente a la Curva Característica. A continuación tendremos que crear la Curva de la Bomba 1. Para ello, desde el *Visor de Datos* seleccionar la opción

Curvas Comport. de la lista desplegable y pulsar el botón *Añadir* . Se añadirá una nueva Curva a la base de datos, con el identificativo 1, y se abrirá el diálogo del *Editor de Curvas de Comportamiento* (ver Figura 2.6). Introducir el *Caudal* nominal (42 l/s) y la *Altura* nominal (45 m) de la bomba en el formulario. EPANET automáticamente creará una curva completa de la bomba a partir de su punto nominal, cuya forma y ecuación pueden observarse en el mismo formulario. Pulsar finalmente el botón **Acceptar** para cerrar el Editor.

Editor de Curvas de Comportamiento				
ID Curva Comport. Descripción				
1		Curva C	aracterística de la Bomba	
Tipo de Co	urva	Ecuació	5n	
BOMBA	•	Altura =	= 60,00 -0,008504 (Caudal)^2,00	
Caudal	Altura		60-	
42	45		50-	
			Ê 40-	
L			l 12 30-	
L			₫ 20-	
L			10-	
		_	0 20 40 60 80 Caudal (LPS)	
Cargar.	Gua	ırdar	Aceptar Cancelar Ayuda	

Figura 2.6 El Editor de Curvas

2.6 Guardar y Reabrir el Proyecto

Una vez completado el diseño inicial de la red, no está de más guardar todos los datos antes de seguir adelante.

- 1. Desde el menú Archivo seleccionar la opción Guardar como.
- 2. En el diálogo *Guardar el Proyecto Como*, seleccionar una carpeta y un nombre de fichero para guardar el proyecto. Como sugerencia, puede guardarse con el nombre Mi_tutorial.net. (La extensión .net será añadida si no se declara.)
- 3. Pulsar Aceptar para guardar el proyecto en dicho fichero.

Los datos del proyecto serán almacenados en el fichero en un formato binario especial. Si se quiere guardar los datos en un fichero de texto legible, utilizar la orden **Archivo >> Exportar >> Red...** en lugar de la anterior.

Para abrir el proyecto de nuevo más tarde, seleccionar la orden **Abrir** del menú **Archivo**.

2.7 Análisis en Régimen Permanente

Disponemos ahora de la información suficiente para llevar a cabo una simulación del comportamiento hidráulico de nuestra red ejemplo en régimen permanente (o para un instante determinado). Para ello seleccionar la opción **Proyecto** >> **Calcular** de la barra de menús o pulsar el botón *Calcular* de la Barra de Herramientas Estándar. (Si la Barra de Herramientas no estuviera visible, seleccionar **Ver** >> **Barra Herramientas** >> **Estándar** en la barra de menús).

Si la simulación no tuviera éxito, aparecería la ventana de *Informe de Estado* indicando cuál ha sido el problema. Si la simulación es correcta, los resultados pueden verse ahora en una amplia variedad de formatos. Probemos algunos de ellos:

- Seleccionar la opción Presión en el desplegable Nudos del Visor del Esquema y observar cómo se colorean los nudos, codificados por el valor de la presión. Para mostrar la leyenda con los códigos de colores aplicados, si ésta no estuviera ya visible, seleccionar Ver >> Leyendas >> Nudos (o pulsar el botón derecho del ratón en cualquier zona vacía del esquema y seleccionar la opción Leyenda Nudos del menú emergente). Para cambiar los intervalos o bien los colores aplicados, pulsar con el botón derecho del ratón sobre la leyenda y abrir el Editor de Leyendas.
- Abrir el *Editor de Propiedades* (realizar una doble pulsación sobre cualquier nudo o línea) y observar que los resultados calculados aparecen al final de la lista de propiedades.
- Crear una lista tabulada con los resultados deseados seleccionando la opción del menú Informes >> Tablas (o bien pulsando el botón *Tablas* de la Barra de Herramientas Estándar). La figura 2.7 muestra una tabla con los

Barra de Herramientas Estandar). La figura 2.7 muestra una tabla con los resultados de las líneas para este caso. Los caudales con signo negativo indican que el flujo va en dirección opuesta a aquella en que se dibujó la tubería inicialmente.

iiii Estado de las Líneas de la Red _□×						
ID Línea	Caudal LPS	Velocidad m/s	Pérdida Unit. m/km	Estado		
Tubería 1	43,95	0,46	0,50	Abierta		
Tubería 2	27,64	0,39	0,46	Abierta		
Tubería 3	11,30	0,36	0,64	Abierta		
Tubería 4	2,16	0,07	0,03	Abierta		
Tubería 5	-6,20	0,20	0,22	Abierta		
Tubería 6	21,45	0,44	0,70	Abierta		
Tubería 7	4,14	0,23	0,43	Abierta		
Tubería 8	-3,36	0,19	0,29	Abierta		
Bomba 9	43,95	0,00	-43,58	Marcha		

Figura 2.7 Tabla con los Resultados en las Líneas

2.8 Análisis en Periodo Extendido

Para convertir nuestro modelo en un caso más realista y llevar a cabo una simulación en periodo extendido³ vamos a crear una *Curva de Modulación* para hacer que las demandas en los nudos varíen de forma periódica a lo largo del día. Para este ejemplo sencillo, aplicaremos una curva de modulación con un intervalo de 6 horas, de modo que la demanda cambie cuatro veces por día (una curva de modulación horaria es más usual, siendo éste el intervalo asignado por defecto al crear un proyecto). Para fijar el intervalo de tiempo seleccionamos *Opciones – Tiempos* en la página de *Datos del Visor*, pulsamos a continuación el botón *Editar* del propio Visor (o hacemos una doble pulsación sobre la selección) para abrir el *Editor de Propiedades* (si aún no es visible), e introducimos el valor 6 en el campo *Intervalo Curvas Modulación*, como se muestra en la figura 2.8. Aprovechando que tenemos abierto el editor de *Opciones de Tiempo*, podemos imponer a continuación la duración total de la simulación, que fijaremos en 3 días (introducir 72 horas en el campo *Duración Total*).

Opciones de Tiempo			
Propiedad	Hr:Min		
Duración Total	72		
Intervalo Cálculo Hidráulico	1:00		
Intervalo Cálculo Calidad	0:05		
Intervalo Curvas Modulación	6:00		
Hora Inicio Curvas Modulación	0:00	-	

Figura 2.8 Opciones de Tiempo

Para crear ahora la curva de modulación, seleccionamos la categoría *Curvas Modulac*. sobre el *Visor* y pulsamos el botón *Añadir* (o utilizar la tecla **Insert**). Se creará una nueva curva con el identificativo 1, y se abrirá el *Editor de Curvas de Modulación* (ver Figura 2.9). Introducir los multiplicadores 0,5 - 1,3 - 1,0 y 1,2 para los intervalos 1 a 4, con lo que cubriremos un total de 24 horas, y pulsar **Aceptar** para cerrar el editor. Los multiplicadores se aplican sobre la demanda base para modificar su valor en cada intervalo. Puesto que la duración total de la simulación es de 72 horas, el patrón anterior se repetirá cada 24 horas.

³ la denominación 'periodo extendido' equivale a una sucesión de estados permanentes, en la que los niveles de los depósitos son actualizados tras cada etapa (NdT)

Figura 2.9 Editor de Curvas de Modulación

Ahora necesitamos asignar la Curva de Modulación 1 a la propiedad *Curva de Demanda* de todos los nudos de caudal de la red. A tal fin podemos hacer uso de una de las opciones de EPANET, evitando así tener que editar todos los nudos individualmente. Si se abren las *Opciones Hidráulicas* en el Editor de Propiedades se observará que hay un campo denominado *Curva Modulac. por Defecto*. Introduciendo en él un 1, la Curva de Modulación de la Demanda de todos los nudos pasará a ser la 1, ya que no existe otra curva asignada específicamente a ningún nudo.

A continuación podemos ya realizar una simulación hidráulica en periodo extendido. Para ello seleccionamos de nuevo **Proyecto** >> **Calcular** (o pulsamos el botón de la Barra de Herramientas Estándar). En un análisis en periodo extendido existen diversos modos de observar los resultados:

- La barra de deslizamiento situada en la página del *Esquema del Visor* permite observar el esquema de la red codificado por colores para diversos instantes de la simulación. Probar seleccionando la *Presión* como variable de nudo y el *Caudal* como variable de línea (opciones por defecto).
- Los botones de vídeo del *Visor* permiten animar el esquema para ver los resultados a través del tiempo. Pulsar el botón de *Avance* para iniciar la animación y el botón *Paro* para detenerla.
- Añadir flechas para indicar la dirección de flujo sobre el esquema (seleccionar Ver >> Opciones del Esquema, a continuación la página *Flechas* del diálogo de *Opciones del Esquema* y validar el estilo de flecha deseado). A continuación animar de nuevo la simulación y observar el cambio de dirección del flujo en la tubería que conecta con el depósito, a medida que éste se llena y se vacía.

- Crear una curva de evolución de las magnitudes asociadas a cualquier nudo o línea. Por ejemplo, para ver cómo cambia el nivel del agua en el depósito con el tiempo:
 - 1. Pulsar sobre el símbolo del depósito.
 - Seleccionar Informes >> Gráficos (o pulsar el botón Gráficos de la Barra de Herramientas Estándar) y se abrirá el diálogo de Selección de la Gráfica.
 - 3. Seleccionar en dicho diálogo el botón *Curva Evolución*.
 - 4. Seleccionar la *Altura* (o la *Presión*) como magnitud a representar.
 - **5.** Pulsar **Aceptar** para validar la elección realizada y ver la curva correspondiente.

Observar el comportamiento periódico de las variaciones de nivel del agua en el depósito (Figura 2.10).

Figura 2.10 Ejemplo de una Gráfica de Evolución del nivel del agua

2.9 Análisis de la Calidad del Agua

A continuación vamos a ver cómo se puede ampliar el análisis anterior para incorporar un modelo de calidad. El caso más simple consiste en realizar un seguimiento del tiempo de permanencia del agua en la red mientras viaja a través de la misma. Para realizar este análisis basta seleccionar la opción *Tiempo Perm.* para la propiedad *Tipo Modelo Calidad* en el editor de las *Opciones de Calidad* (para abrir dicho diálogo, seleccionar *Opciones-Calidad* en la página de *Datos del Visor* y pulsar el botón *Editar* en la misma página para mostrar el *Editor de Propiedades*). A continuación ejecutar la simulación y seleccionar el parámetro *Tiempo Perm.* en el desplegable del *Esquema del Visor*, para ver los resultados sobre el esquema. Generar ahora la Curva de Evolución del Tiempo de Permanencia en el depósito. Observar cómo, a diferencia del nivel del agua, con 72 horas de simulación no es suficiente para obtener un comportamiento periódico del tiempo de permanencia del agua en el depósito (por defecto, la simulación comienza con un tiempo inicial de 0h para todos los nudos).

Intentar repetir ahora la simulación con una duración de 240 horas, o bien asignando un tiempo inicial de permanencia de 60 horas en el depósito (introducir para ello el valor 60 en la celda *Calidad Inicial* del *Editor de Propiedades* para el depósito).

Para concluir este repaso, vamos a simular el transporte y decaimiento del cloro a través de la red. Introducir para ello los siguiente cambios en la base de datos:

- 1. Seleccionar la categoría *Opciones–Calidad* en la página de *Datos del Visor* y abrir el Editor de Propiedades correspondiente. En el campo *Tipo Modelo Calidad* introducir la palabra *Cloro*.
- 2. Pasar ahora a la categoría Opciones-Reacciones desde el mismo Visor. Introducir como Coef. Global Reacc. Medio el valor –1,0. Este dato refleja la velocidad a la cual disminuye la concentración de cloro debido a las reacciones que ocurren en el propio seno del agua. El mismo coeficiente será aplicado a todas las tuberías de la red, si bien se puede editar individualmente para cada tubería si fuera necesario.
- 3. Pulsar ahora sobre el embalse y poner su *Calidad Inicial* a 1 (1 mg/l). Este valor indica la concentración de cloro que entra continuamente a la red. (Restablecer la calidad inicial en el depósito al valor 0 si se hubiera cambiado)

Ahora ejecutar de nuevo la simulación. Utilizar la barra de deslizamiento de la página del *Esquema del Visor* para ver cómo va cambiando la concentración de cloro a través de la red y a lo largo del tiempo. Observar cómo para esta red tan simple los nudos 5, 6 y 7 presentan niveles bajos de cloro debido a que se alimentan con agua procedente del depósito, la cual pierde allí, durante su estancia, gran parte del cloro con que entró.

Crear finalmente un informe de las reacciones habidas durante esta simulación seleccionando **Informes** >> **Reacciones** desde el Menú Principal. Dicho informe debe parecerse al mostrado en la Figura 2.11, para un periodo de simulación de 72 horas.

En él se muestra cuánto cloro se pierde por término medio en las tuberías, frente al que se pierde en el depósito. El término "Medio" hace referencia a las reacciones que ocurren en el seno del agua, mientras que el rótulo "Pared" hace referencia a las reacciones que ocurren en las paredes de las tuberías. Este último valor es cero, dado que no hemos especificado ningún coeficiente de reacción con las paredes en este ejemplo.

Figura 2.11 Ejemplo de Informe de Reacciones del cloro habidas en la red

A través de este ejemplo hemos visto solo unas pocas de las muchas prestaciones que ofrece EPANET. Algunas de las características adicionales con las cuales se puede experimentar son las siguientes:

- Editar las propiedades para un *Grupo de Objetos* que caen dentro de un área delimitada por el usuario.
- Aplicar *Leyes de Control* para regular el modo de operación de las bombas en base a la hora real o al nivel de agua en los depósitos.
- Explorar diferentes *Opciones de Visualización del Esquema de la Red*, tales como representar el tamaño de los nudos en función del valor que toma una magnitud asociada.
- Superponer un *Mapa de Fondo* (p. ej. un mapa de calles) detrás del esquema de la red.
- Crear diferentes *Tipos de Gráficas*, tales como *Perfiles Longitudinales* o *Mapas de Isolíneas*.
- Añadir *Datos de Calibración* con medidas de campo a un proyecto y obtener un informe sobre la bondad de la calibración.
- *Copiar* el esquema de la red, una gráfica o un informe al portapapeles, o bien a un fichero.
- Guardar y recuperar un *Escenario de Diseño* (p. ej. las demandas actuales en los nudos, los valores de la rugosidad en las tuberías, etc).
En este capítulo se describe el modo en que se modelan con EPANET los distintos componentes físicos y no físicos que configuran un sistema de distribución de agua, y sus parámetros operacionales. En capítulos posteriores se tratará con más detalle el modo de introducir estos componentes desde el programa. Se ofrece también una visión general de los métodos de cálculo que emplea EPANET para simular el comportamiento hidráulico de la red y la evolución de la calidad del agua en la misma.

3.1 Componentes físicos

EPANET modela un sistema de distribución de agua como un conjunto de líneas conectadas por su nudos extremos. Las líneas representan tuberías, bombas, o válvulas de control. Los nudos representan puntos de conexión entre tuberías o extremos de las mismas, con o sin demandas (en adelante los denominaremos en general *Nudos de Caudal*), y también depósitos o embalses. La figura siguiente muestra cómo se interconectan todos estos objetos entre sí para formar el modelo de una red.

Figura 3.1 Componentes físicos de un Sistema de Distribución de Agua

Nudos de Caudal

Los *Nudos de Caudal* son los puntos de la red donde confluyen las tuberías o bien sus extremos, y a través de ellos el agua entra o sale de la misma (también pueden ser sólo puntos de paso). Los datos básicos imputados a los nudos son:

- la cota respecto a un nivel de referencia (usualmente el nivel del mar)
- la demanda de agua (flujo que abandona la red)
- la calidad inicial del agua

Los resultados obtenidos para los nudos, en cada uno de los periodos de simulación, son:

- la altura piezométrica (energía interna por unidad de peso del fluido, o bien suma de la cota más la altura de presión)
- la presión
- la calidad del agua

Los nudos de caudal pueden también:

- presentar una demanda variable en el tiempo
- tener asignados distintos tipos de demanda (doméstica, industrial, etc)
- presentar una demanda negativa, indicando que el caudal entra a la red a través del nudo
- ser punto de entrada de una fuente contaminante a la red
- tener asociado un emisor (o hidrante), cuyo caudal de salida depende de la presión.

Embalses

Los *Embalses* son nudos que representan una fuente externa de alimentación, de capacidad ilimitada, o bien un sumidero de caudal. Se utilizan para modelar elementos como lagos, captaciones desde ríos, acuíferos subterráneos, o también puntos de entrada a otros subsistemas. Los embalses pueden utilizarse también como puntos de entrada de contaminantes.

Las propiedades básicas de un embalse son su altura piezométrica (que coincidirá con la cota de la superficie libre del agua si éste se encuentra a la presión atmosférica), y la calidad del agua en el mismo, caso de realizar un análisis de calidad.

Dado que un embalse actúa como un elemento de contorno del sistema, su altura o calidad del agua no se verán afectados por lo que pueda ocurrir en la red. Por consiguiente, no existen resultados derivados del cálculo en los mismos. No obstante, su altura puede hacerse variar con el tiempo asociándole una curva de modulación (ver el epígrafe *Curvas de Modulación* más adelante).

Depósitos

Los *Depósitos* son nudos con cierta capacidad de almacenamiento, en los cuales el volumen de agua almacenada puede variar con el tiempo durante la simulación. Los datos básicos de un depósito son:

- la cota de solera (para la cual el nivel del agua es cero)
- el diámetro (o su geometría si no es cilíndrico)
- el nivel del agua inicial, mínimo y máximo del agua
- la calidad inicial del agua.

Los principales resultados asociados a un depósito, a lo largo de la simulación, son:

- la altura piezométrica (cota de la superficie libre)
- la presión (o nivel del agua)
- la calidad del agua.

El nivel del agua en los depósitos debe oscilar entre el nivel mínimo y el nivel máximo. EPANET impide la salida del agua del depósito cuando está a su nivel mínimo y cierra la entrada de agua cuando está a su nivel máximo. Los depósitos también pueden utilizarse como puntos de entrada de contaminantes a la red.

Emisores

Los emisores son dispositivos asociados a los nudos de caudal que permiten simular el flujo de salida a través de una tobera u orificio descargando a la atmósfera. El caudal de salida por un emisor varía en función de la presión disponible en el nudo, conforme a la ecuación:

$$q = C p$$

donde q = caudal, p = presión, C = coeficiente de descarga, y γ = exponente de la presión. En el caso de las toberas y rociadores el exponente γ toma el valor 0,5 mientras que el coeficiente de descarga viene proporcionado por el fabricante, en unidades lps/m^{0.5} (gpm/psi^{0.5}), y representa el caudal que sale por el emisor para una caída de presión en el mismo de 1 m (1 psi).

Los emisores se emplean para simular el caudal que sale a través de un rociador en una red de extinción de incendios, o a través de un hidrante en un sistema de riego a presión. También pueden emplearse para simular una fuga en una tubería conectada al nudo (en este caso el coeficiente de descarga y el exponente de la presión en la fuga deben estimarse) o para calcular el caudal de incendios en un nudo (esto es, el caudal extra que puede suministrarse para una presión residual mínima). Para esto último basta imponer un valor elevado al coeficiente de descarga (p. ej. 100 veces el caudal máximo esperado) y modificar la cota del nudo agregándole el valor de la presión mínima requerida, en m (pies). EPANET interpreta los emisores como una propiedad del nudo, y no como un componente independiente.

Cuando se especifica un emisor y una demanda normal en un nudo, el valor que presenta EPANET en los resultados de salida incluye a ambos, la demanda normal y el caudal que atraviesa el emisor.

Tuberías

Las tuberías son líneas que transportan el agua de un nudo a otro. EPANET asume que las tuberías están completamente llenas en todo momento, y por consiguiente que el flujo es a presión. La dirección del flujo es siempre del nudo de mayor altura piezométrica (suma de la cota más la presión, o bien energía interna por unidad de peso) al de menor altura piezométrica. Los principales parámetros de una tubería son:

- los nudos inicial y final
- el diámetro
- la longitud
- el coeficiente de rugosidad (para calcular las pérdidas de carga)
- su estado (abierta, cerrada, o con válvula de retención).

El parámetro de estado permite simular el hecho de que una tubería posea válvulas de corte o válvulas de retención (válvulas que permiten el paso del flujo en un solo sentido) sin tener que modelar estos elementos explícitamente.

Los datos de una tuberías relacionados con los modelos de calidad son:

- el coeficiente de reacción en el medio
- el coeficiente de reacción en la pared.

Estos coeficiente son analizados con mayor profundidad en el apartado 3.4

Los resultados en una tubería contemplan:

- el caudal de circulación
- la velocidad del flujo
- la pérdida de carga unitaria
- el factor de fricción para la fórmula de Darcy-Weisbach
- la velocidad media de reacción (a lo largo de la tubería)
- la calidad media del agua (a lo largo de la tubería).

La pérdida de carga (o de altura piezométrica) en una tubería debida a la fricción por el paso del agua, puede calcularse utilizando tres fórmulas de pérdidas diferentes:

- la fórmula de Hazen-Williams
- la fórmula de Darcy-Weisbach
- la fórmula de Chezy-Manning

La fórmula de Hazen-Williams es la más utilizada en EEUU. Sin embargo, no puede utilizarse para líquidos distintos del agua, y fue desarrollada originalmente sólo para flujo turbulento. Desde el punto de vista académico, la fórmula de Darcy-Weisbach es la más correcta, y es aplicable a todo tipo de líquidos y regímenes. Finalmente, la fórmula de Chezy-Manning es utilizada usualmente para canales y tuberías de gran diámetro, donde la turbulencia está muy desarrollada.

Todas las fórmulas emplean la misma ecuación básica para calcular la pérdida de carga entre el nudo de entrada y el de salida:

$$h_L = Aq^B$$

donde h_L = pérdida de carga (en unid. longitud), q = caudal (en unid. volumen/tiempo), A = coeficiente de resistencia, y B = exponente del caudal. En la Tabla 3.1 se listan las expresiones del coeficiente de resistencia y el valor del exponente del caudal para cada una de las fórmulas de pérdidas indicadas. Cada fórmula utiliza un coeficiente de rugosidad distinto, el cual debe determinarse empíricamente. En la Tabla 3.2 se listan los rangos de variación de estos coeficientes, para tubería nueva de distintos materiales. En la práctica hay que ser conscientes de que el valor de estos coeficientes puede cambiar considerablemente con la edad de las tuberías.

Al aplicar la fórmula de Darcy-Weisbach, EPANET emplea distintos métodos para calcular el factor de fricción f, dependiendo del tipo de régimen:

- Para flujo laminar (Re < 2.000) emplea la fórmula de Hagen–Poiseuille
- Para flujo turbulento (Re > 4.000) emplea la aproximación explícita de Swamee y Jain a la fórmula de Colebrook-White
- Para el flujo de transición (2.000 < Re < 4.000) aplica una interpolación cúbica al diagrama de Moody

Para ver las ecuaciones realmente empleadas puede consultarse el Apéndice D.

2

Tabla 3.1 Fór (las	Fórmulas de Pérdida de Carga para tubería llena (las pérdidas se expresan en mca y el caudal en m ³ /seg)				
	Coeficiente de Resistencia	Expon. Caudal			
Fórmula	(A)	<i>(B)</i>			
Hazen-Williams	10,674 $C^{-1,852} d^{-4,871} L$ (⁴)	1,852			
Darcy-Weisbach	$0,0827 \text{ f}(\epsilon,d,q) \text{ d}^{-5} \text{ L} (^{5})$	2			

Chezy-Manning

llena m³/seg)

 $10,294 \text{ n}^2 \text{ d}^{-5,33} \text{ L}$

donde: C = Coeficiente de rugosidad de Hazen-Williams

 $f = factor de fricción (depende de \varepsilon, d, y q)$ n = Coeficiente de rugosidad de Manning

 ε = Coeficiente de rugosidad de Darcy-Weisbach (m)

 $(^{6})$

Tabla 3.2	Coeficientes	de Rugosidad	l para Tubería Nueva	а

d = diámetro de la tubería (m) L = longitud de la tubería (m)

 $q = caudal (m^3/s)$

Material	C Hazen-Williams (universal)	ε Darcy-Weisbach (mm)	n Manning (universal)
Fundición	130 - 140	0,25	0,012 - 0,015
Hormigón o revest. de Hormigón	120 – 140	0,3 - 3,0	0,012 - 0,017
Hierro Galvanizado	120	0,15	0,015 - 0,017
Plástico	140 - 150	0,0015	0,011 - 0,015
Acero	140 - 150	0,03	0,015 - 0,017
Cerámica	110	0,3	0,013 - 0,015

Las tuberías pueden abrirse o cerrarse en determinados instantes de la simulación o bajo ciertas condiciones específicas, por ejemplo cuando el nivel de un depósito rebasa por encima o por debajo unos ciertos límites, o cuando la presión en un nudo supera o queda por debajo de ciertos umbrales. Ver el epígrafe Leyes de Control del apartado 3.2 para más detalles.

⁴ En unidades US la fórmula de Hazen-Williams es: 4,727 C^{-1,852} d^{-4,871} L . El factor numéricos se ve modificado para que los valores del coeficiente C resulten universales (NdT).

⁵ En unidades US la fórmula de Darcy-Weisbach es: 0,0252 f(ɛ,d,q)d⁻⁵L, debiendo expresarse los valores del coeficiente ε en pies (NdT).

⁶ En unidades US la fórmula de Chezy- Manning es: 4,66 n² d^{-5,33} L. De nuevo el factor numérico se ve modificado, de modo que los valores del coeficiente n resulten universales (NdT)

Pérdidas Menores

Las pérdidas menores (también denominadas pérdidas localizadas) pueden interpretarse como debidas al incremento de la turbulencia que se produce en los cambios de dirección, codos, accesorios, etc. La importancia de incluir o no tales pérdidas depende del tipo de red modelada y de la precisión de los resultados deseada. EPANET permite asociar a cada tubería un coeficiente de pérdidas menores. El valor de la pérdida será el producto de dicho coeficiente por la altura dinámica en la tubería, esto es:

$$h_L = K\left(\frac{v^2}{2g}\right)$$

donde K = coeficiente de pérdidas menores, v = velocidad del flujo (unid. longitud/tiempo), y g = aceleración de la gravedad (unid. longitud/tiempo²). La Tabla 3.3 proporciona el valor del coeficiente de pérdidas menores para algunos de los accesorios más comunes. Estos valores son solo indicativos, ya que K depende de la geometría del accesorio, del número de Reynolds y en algunos casos también de las condiciones del flujo.

ACCESORIO	COEF. PERDIDAS
Válvula de Globo, todo abierta	10,0
Válvula de Angulo, todo abierta	5,0
Válv. Retenc. Clapeta, todo abierta	2,5
Válvula compuerta, todo abierta	0,2
Codo de radio pequeño	0,9
Codo de radio mediano	0,8
Codo de radio grande	0,6
Codo a 45 grados	0,4
Codo de Retorno (180°)	2,2
Té Estándar – flujo recto	0,6
Té Estándar – flujo desviado	1,8
Entrada brusca	0,5
Salida brusca	1,0

Tabla 3.3 Coeficientes de Pérdidas Menores para algunos Accesorios

Bombas

Las bombas son líneas que comunican energía al fluido elevando su altura piezométrica. Los datos principales de una bomba son sus nudos de aspiración e impulsión y su curva característica a velocidad nominal (o relación entre caudal trasegado y la altura comunicada). En lugar de dar la curva característica, el comportamiento de una bomba puede también modelarse admitiendo que trabaja a potencia constante para cualquier combinación de caudal y altura, lo que permite determinar la altura comunicada al fluido en función del caudal de paso.

Los resultados principales asociados a una bomba son el caudal trasegado el incremento de altura comunicada al fluido. El flujo a través de una bomba es de sentido único, y EPANET no permite a la bomba operar fuera del rango delimitado por su curva característica.

Se pueden considerar también bombas de velocidad variable, sin más que especificar el valor de su velocidad relativa de giro, con las mismas restricciones anteriormente mencionadas. Por definición, a la curva original de la bomba suministrada como dato, se le supone una velocidad relativa de 1. De este modo, si la velocidad de giro se duplica, entonces la velocidad relativa sería 2; y si gira a mitad velocidad, entonces sería 0,5. Al cambiar la velocidad de giro de la bomba, su curva característica se desplaza y cambia de forma (ver el epígrafe Curvas Características, más adelante).

Al igual que las tuberías, las bombas puede pararse o arrancarse durante la simulación en instantes prefijados, o cuando se cumplan determinadas condiciones en la red. También se puede controlar el modo de funcionamiento de una bomba asociándole una Curva de Modulación a su velocidad de giro. EPANET permite además calcular el consumo energético de una bomba y su coste. Para ello cada bomba puede tener asociada una curva de rendimiento y una curva de modulación de los costes energéticos. Si éstos no se especifican, se adoptarán los valores globales asignados para todo el proyecto en Opciones de Energía.

Como antes se ha dicho, el caudal a través de una bomba es de sentido único. Si las condiciones de funcionamiento del sistema exigen una altura mayor que la que puede proporcionar la bomba, EPANET parará la bomba. Si lo que se requiere es un caudal superior al máximo de su curva, EPANET extrapolará la curva de la bomba hasta obtener el caudal requerido, incluso si ello diera lugar a una altura negativa. En ambos casos se emitirá un mensaje de advertencia.

Válvulas

Las válvulas son líneas que limitan la presión o el caudal en un punto determinado de la red. Los datos principales de una válvula son:

- los nudos aguas arriba y aguas abajo
- el diámetro
- la consigna
- su estado (forzado o no)

Los resultados asociados con una válvula son básicamente el caudal de paso y la pérdida de carga.

Los tipos de válvulas contemplados en EPANET son:

- Válvulas Reductoras de Presión (en inglés PRV)
- Válvulas Sostenedoras de Presión (en inglés PSV)
- Válvulas de Rotura de Carga (en inglés PBV)
- Válvulas Limitadoras de Caudal (en inglés FCV)
- Válvulas de Regulación (en inglés TCV)
- Válvulas de Propósito General (en inglés GPV).

Las abreviaciones inglesas se utilizan para configurar el fichero de entrada de datos (ver apéndice C, Ejecución de EPANET en Modo Comando)

Las Válvulas Reductoras de Presión tratan de limitar la presión en el nudo aguas abajo de la válvula, para que no exceda de un valor de consigna prefijado. EPANET determina en cada momento en cuál de los tres estados posibles se encuentra la válvula:

- *parcialmente abierta* (esto es, activa) para mantener la presión aguas abajo en el valor de consigna prefijado, siempre y cuando la presión aguas arriba sea superior al valor de consigna.
- *completamente abierta*, si la presión aguas arriba es inferior al valor de consigna
- *cerrada*, si la presión aguas abajo excede a la del nudo aguas arriba (para impedir el flujo inverso)

Las Válvulas Sostenedoras de Presión tratan de mantener la presión en el nudo aguas arriba de la válvula. EPANET determina asimismo en cada momento en cuál de los tres estados posibles se encuentra la válvula:

- *parcialmente abierta* (esto es, activa) para mantener la presión aguas arriba en el valor de consigna prefijado, siempre y cuando la presión aguas abajo sea inferior al valor de consigna.
- *completamente abierta*, si la presión aguas abajo es superior al valor de consigna.
- *cerrada*, si la presión aguas abajo excede a la del nudo aguas arriba (para impedir el flujo inverso).

Las Válvulas de Rotura de Carga fuerzan el valor de la caída de presión a través de la válvula. El flujo a través de la válvula puede ser en cualquier dirección. Estas válvulas no representan a ningún componente físico, pero son muy útiles para simular situaciones en las que la caída de presión a través de la válvula es conocida⁷.

Las Válvulas Limitadoras de Caudal limitan el caudal de paso a través de la válvula a un valor prefijado. El programa emite un mensaje de advertencia si no puede conseguirse dicho caudal, a no ser que hubiera un aporte de energía (esto es, si el caudal a válvula abierta fuera inferior al de consigna)⁸.

Las Válvulas de Regulación son bidireccionales y simulan una válvula parcialmente cerrada, cuyo comportamiento queda determinado por el valor del coeficiente de pérdidas menores en la válvula. Usualmente los fabricantes proporcionan la relación entre dicho coeficiente y el grado de apertura de la válvula.

Las Válvulas de Propósito General se utilizan para representar una línea cuya relación pérdida-caudal es proporcionada por el usuario, en lugar de seguir el comportamiento típico de las válvulas establecido por las fórmulas hidráulicas

⁷ Si se invierten los nudos de una Válvula de Rotura de Carga, ésta se comporta como una bomba de altura prefijada (NdT)

⁸ Las Válvulas Limitadoras de Caudal son unidireccionales, y deben orientarse según el sentido del flujo a limitar. Si se especifica un caudal negativo se comportan como una bomba de caudal prefijado (NdT)

convencionales. Pueden utilizarse para modelar una turbina, el descenso dinámico de un pozo o una válvula reductora de presión controlada por caudal.

Las válvulas de corte (tipo compuerta) y las válvulas de retención (o antirretorno), cuya acción es abrir o cerrar totalmente el paso del flujo, no se consideran como líneas independientes, sino que deben incorporarse como propiedades de la tubería en la cual se alojan.

Cada tipo de válvula tiene una consigna diferente, relacionada con su comportamiento (la presión en el caso de las Reductoras y Sostenedoras, la caída de presión para las de Rotura de Carga, el caudal para las Limitadoras de Caudal, el coeficiente de pérdidas para las de Regulación y la curva de pérdidas para las de Propósito General).

La consigna de control de una válvula puede inhibirse especificando en un momento determinado que ésta se encuentra totalmente abierta o totalmente cerrada. Tanto el estado de una válvula como su consigna pueden modificarse a lo largo de una simulación utilizando las leyes de control.

Debido al modo en que internamente se ha modelado el comportamiento de las diferentes válvulas, hay que cumplir ciertas normas a la hora de añadir las válvulas al esquema de la red:

- una Válvula Reductora, una Válvula Sostenedora ó una Válvula Limitadora de Caudal no puede conectarse directamente a un embalse o depósito (utilizar una tubería de pequeña longitud para enlazarlos en tal caso)
- dos Válvulas Reductoras no pueden compartir el nudo aguas abajo, ni conectarse en serie
- dos Válvulas Sostenedoras no pueden compartir el nudo aguas arriba, ni conectarse en serie
- una Válvula Sostenedora no puede conectarse al nudo aguas abajo de una Válvula Reductora.

3.2 Componentes No Físicos

Además de los componentes físicos, EPANET utiliza tres tipos de componentes complementarios – curvas de comportamiento, curvas de modulación y leyes de control – para describir el comportamiento y modo de operación del sistema.

Curvas de Comportamiento

Las Curvas de Comportamiento (o Curvas simplemente) son objetos que contienen pares de datos ordenados, los cuales representan una relación entre dos magnitudes. Dos o más objetos físicos pueden compartir la misma curva. En un modelo de EPANET se pueden declarar los siguientes tipos de Curvas:

- Curvas Características
- Curvas de Rendimiento
- Curvas de Cubicación
- Curvas de Pérdidas

Curva Característica (de una Bomba)

La Curva Característica de una Bomba representa la relación entre la altura comunicada al fluido y el caudal de paso, a su velocidad nominal de giro. La altura es la energía comunicada al fluido por unidad de peso, o bien, la diferencia de presiones entre la salida y la entrada de la bomba, y se representa sobre el eje vertical Y, en metros (pies). El caudal se representa sobre el eje horizontal X, en las unidades de caudal elegidas. Para que la curva característica de una bomba sea válida, la altura debe disminuir al aumentar el caudal.

EPANET ajustará diferentes tipos de curvas, en función del número de puntos suministrado (ver Figura 3.2):

Figura 3.2 Ejemplos de Curvas Características de una Bomba

Curva de un solo Punto – Una curva de un solo punto queda definida por una única relación altura-caudal, que normalmente representará el punto de funcionamiento deseado o nominal de la bomba. EPANET añade dos puntos más a la curva, uno a caudal nulo, cuya altura supone que es un 133 % de la altura nominal, y otro a altura cero, cuyo caudal correspondiente asume que es el doble del caudal nominal. De este modo la curva es tratada finalmente como una curva de tres puntos.

Curva de Tres Puntos – Cuando la curva de una bomba se define mediante tres puntos, éstos se interpretan como: un punto de funcionamiento a Caudal Bajo (altura a caudal nulo o a caudal mínimo), un punto de funcionamiento al Caudal de Diseño (caudal y altura nominales de la bomba), y un punto de funcionamiento a Caudal Máximo (caudal y altura a caudal máximo). EPANET intenta ajustar una curva continua del tipo:

$$h_G = A - B q^C$$

que pase por los tres puntos especificados, para definir el comportamiento completo de la bomba. En la expresión anterior h_G es el incremento de altura, q el caudal de paso, y A, B, y C son constantes de la curva de ajuste.

Curva MultiPunto – La curva de una bomba se interpreta como una curva multipunto si el número de pares de valores altura-caudal proporcionados es dos, cuatro o más de cuatro. EPANET completa en este caso la curva de la bomba uniendo los puntos proporcionados mediante tramos rectos.

Para bombas de velocidad variable, la curva de la bomba se modifica a medida que cambia la velocidad. Se admite que las relaciones de caudales Q y alturas H entre dos puntos semejantes, para dos velocidades de giro cualesquiera N_1 y N_2 , guardan las relaciones:

$$\frac{Q_1}{Q_2} = \frac{N_1}{N_2} \qquad \qquad \frac{H_1}{H_2} = \left(\frac{N_1}{N_2}\right)^2$$

EPANET parará una bomba si el sistema demanda una altura superior a la correspondiente al primer punto de la curva (p.ej. la altura a caudal cero). Es requisito suministrar una curva característica para cada bomba del sistema, a menos que la bomba trabaje a potencia constante

Curva de Rendimiento (de una Bomba)

La Curva de Rendimiento de una Bomba relaciona el rendimiento, en tanto por ciento (eje Y), con el caudal de paso, en las unidades elegidas (eje X). Un ejemplo de una curva de rendimiento se muestra en la Figura 3.3. El rendimiento se entiende como global del grupo impulsor, e incluye tanto las pérdidas totales de la bomba como las pérdidas eléctricas o de otro tipo del motor de arrastre. La curva de rendimientos se utiliza únicamente para el cálculo energético. Si ésta no se declara, se asumirá un rendimiento fijo para todos los puntos de trabajo.

Figura 3.3 Curva de Rendimiento de una Bomba

Curva de Cubicación (de un Depósito)

La Curva de Cubicación de un Depósito relaciona el volumen de agua almacenado, en metros (pies) cúbicos (eje Y), con el nivel de agua en el mismo, en metros (pies) (eje X). Se utiliza, en caso necesario, para representar con mayor precisión el comportamiento de los depósitos cuya sección transversal varía con la altura. Los niveles máximo y mínimo abarcados por la curva deben contener a los niveles máximo y mínimo entre los cuales opera el depósito. En la figura 3.4 se muestra un ejemplo de una curva de cubicación.

Figura 3.4 Curva de Cubicación de un Depósito

Curvas de Pérdidas (de una Válvula de Propósito General)

Una Curva de Pérdidas se utiliza para relacionar la pérdida de carga a través de una Válvula de Propósito General, en metros o en pies (eje Y), con el caudal de paso, en las unidades de caudal elegidas (eje X). Permite modelar componentes y situaciones en las cuales existe una relación única entre el caudal y la pérdida de carga, como válvulas reductoras de presión controladas por caudal, turbinas o curvas de descenso dinámico de un pozo.

Curvas de Modulación

Las Curvas de Modulación (o Patrones), son una secuencia de factores multiplicativos que, aplicados sobre un valor base, hacen que éste varíe con el tiempo. Las Curvas de Modulación se asocian a las demandas en los nudos, a las alturas de los embalses, a la velocidad de giro de las bombas, a las inyecciones de contaminantes en la red, y al precio de la energía. El intervalo de tiempo para todos los patrones es un mismo valor, el cual se establece en las *Opciones de Tiempo* del proyecto (ver Apartado 8.1). Dentro de un intervalo se admite que el valor de la magnitud permanece constante, e igual al producto del valor base por el factor multiplicativo correspondiente a dicho intervalo. Aunque todas las curvas de modulación tengan el mismo intervalo de tiempo, cada una puede contener un número diferente de periodos. Cuando el tiempo de simulación excede al definido por el número de periodos de la curva, ésta se repite a partir del primer periodo.

Como ejemplo del modo en que se aplican las curvas de modulación consideremos un nudo de demanda, con una demanda media de 10 l/s.

Supongamos que el intervalo de tiempo se ha establecido en 4 horas, y que la curva de modulación asociada a dicho nudo es la siguiente:

Periodo	1	2	3	4	5	6
Multiplicador	0,5	0,8	1,0	1,2	0,9	0,7

En tales circunstancias, la variación temporal de la demanda aplicada en dicho nudo será:

Horas	0-4	4-8	8-12	12-16	16-20	20-24	24-28
Demanda	5	8	10	12	9	7	5

Leyes de Control

Las Leyes de Control son reglas que determinan el modo de operación de la red durante la simulación. Controlan el estado de determinadas líneas de la red en función del tiempo, de los niveles en los depósitos y de las presiones en puntos de referencia de la red. Las leyes de control pueden clasificarse en dos categorías:

- Leyes de Control Simples
- Leyes de Control basadas en Reglas

Leyes de Control Simples

Las Leyes de Control Simples cambian el estado o la consigna de una línea en base a:

- el nivel de agua en un depósito,
- la presión en un nudo,
- el instante de la simulación,
- la hora del día.

Las instrucciones de las leyes de control simples responden a alguno de los siguientes formatos⁹:

```
LINK IDlínea estado IF NODE IDnudo ABOVE/BELOW valor
LINK IDlínea estado AT TIME tiempo
LINK IDlínea estado AT CLOCKTIME hora_real AM/PM
```

donde:

IDlínea	=	identificativo ID de una línea,
estado	=	OPEN ó CLOSED, la velocidad de giro de una bomba, o la
		consigna de una válvula de control
IDnudo	=	identificativo ID de un nudo,
valor	=	la presión en un nudo o el nivel en un depósito,
tiempo	=	el tiempo de simulación desde el comienzo, expresado en
		horas, o en horas:minutos,
hora_real	=	una hora del día, en formato AM (hasta mediodía) ó PM (desde mediodía hasta medianoche)
		(desde mediodia nasta medianoene)

A continuación se muestran algunos ejemplos de leyes de control simples:

⁹ Las palabras claves de las leyes de control no se han traducido por compatibilidad con la estructura interna de datos de EPANET, y también con los ficheros de datos que funcionan con la versión inglesa

Ley de Control	Significado
LINK 12 CLOSED IF NODE 23 ABOVE 5	Cerrar la Línea 12 cuando el nivel en
	el Depósito 23 exceda de 5 m
LINK 12 OPEN IF NODE 130 BELOW 20	Abrir la Línea 12 si la presión en el
	Nudo 130 cae por debajo de 20 m
LINK 12 1.5 AT TIME 16	Fijar la velocidad relativa de la
	bomba 12 en 1,5 a las 16 horas de la
	simulación
LINK 12 CLOSED AT CLOCKTIME 10 AM	La Línea 12 se cerrará a las 10 AM y
LINK 12 OPEN AT CLOCKTIME 8 PM	se abrirá a las 8 PM repetidamente a
	lo largo de la simulación

No hay límite en cuanto al número de leyes de control simples que pueden imponerse.

- **Nota:** Las leyes de control se establecen en términos del nivel del agua sobre el fondo del depósito, y no de la altura total (o altura piezométrica) de la superficie libre.
- **Nota:** Cuando se imponen dos leyes de control basadas en valores de la presión muy próximos, se pueden obtener inestabilidades durante la simulación. Para hacer el sistema más estable, se aconseja imponer dichas condiciones mediante Leyes de Control basadas en Reglas.

Leyes de Control basadas en Reglas

Las Leyes de Control basadas en Reglas, permiten controlar el estado de las líneas o las consignas en base a una combinación de situaciones que pueden darse en la red, una vez calculado inicialmente el estado de la misma para el intervalo en curso. A continuación se muestran un par de ejemplos de Leyes de Control basadas en Reglas:

Ejemplo 1:

Este conjunto de reglas permiten parar una bomba y abrir un by-pass cuando el nivel en un depósito excede de un determinado valor, y efectuar las operaciones contrarias cuando el nivel del depósito esté por debajo de otro valor.

RULE 1 IF TANK 1 LEVEL ABOVE 4.8 THEN PUMP 335 STATUS IS CLOSED AND PIPE 330 STATUS IS OPEN RULE 2 IF TANK 1 LEVEL BELOW 0.5 THEN PUMP 335 STATUS IS OPEN AND PIPE 330 STATUS IS CLOSED

Ejemplo 2:

Este conjunto de reglas permite modificar el nivel del depósito al cual debe arrancar la bomba, en función de la hora del día.

RULE 3


```
IF SYSTEM CLOCKTIME >= 8 AM
AND SYSTEM CLOCKTIME < 6 PM
AND TANK 1 LEVEL BELOW 1.2
THEN PUMP 335 STATUS IS OPEN
RULE 4
IF SYSTEM CLOCKTIME >= 6 PM
OR SYSTEM CLOCKTIME < 8 AM
AND TANK 1 LEVEL BELOW 1.4
THEN PUMP 335 STATUS IS OPEN
```

Una descripción completa de los formatos utilizados por las Leyes de Control basadas en Reglas puede encontrarse en el Apéndice C, dentro de la sección [RULES].

3.3 El Modelo de Simulación Hidráulica

El modelo de simulación hidráulica de EPANET calcula las alturas piezométricas en los nudos y los caudales en las líneas, dados los niveles iniciales en los embalses y depósitos, y la sucesión en el tiempo de las demandas aplicadas en los nudos. De un instante al siguiente se actualizan los niveles en los depósitos conforme a los caudales calculados que entran o salen de los mismos, y las demandas en los nudos y niveles en los embalses conforme a sus curvas de modulación. Para obtener las alturas y caudales en un determinado instante se resuelven simultáneamente las ecuaciones de conservación del caudal en los nudos y las ecuaciones de pérdidas en todos los tramos de la red. Este proceso, conocido como "equilibrado hidráulico", requiere el uso de método iterativos para resolver las ecuaciones de tipo no lineal involucradas. EPANET emplea a tal fin el "Algoritmo del Gradiente". Para más detalles, consultar el Apéndice D.

El intervalo de cálculo hidráulico utilizado para llevar a cabo la simulación en periodo extendido (EPS) puede ser fijado por el usuario. El valor típico es de 1 hora. Sin embargo, en ocasiones el intervalo utilizado por EPANET internamente puede ser más corto, por alguna de las siguiente razones:

- la intercalación de un instante en el que se desean conocer los resultados
- la intercalación de un instante obligado por las curvas de modulación
- un depósito se llena o se vacía
- se activa una ley de control simple o basada en reglas

3.4 El Modelo de Simulación de la Calidad del Agua

El simulador de calidad de EPANET utiliza una aproximación Lagrangiana para efectuar el seguimiento, a intervalos fijos de tiempo, del destino de una serie de segmentos discretos de agua consideradas a priori, a medida que éstas avanzan por las tuberías y se mezclan en los nudos de confluencia. Los intervalos de tiempo empleados para ejecutar el modelo de calidad son normalmente muy inferiores a los empleados para ejecutar el modelo hidráulico (minutos, más bien que horas) con el fin de ajustarse a los pequeños tiempos de recorrido que pueden darse en algunas tuberías. Sin embargo, al igual que sucede con el modelo hidráulico, los resultados se muestran únicamente en los instantes prefijados por el usuario para confeccionar el informe.

El Modelo de Transporte

El método empleado por el algoritmo lagrangiano va actualizando en cada paso la concentración y el tamaño de una serie de segmentos de agua, los cuales rellenan las tuberías sin solapamientos. A medida que avanza el tiempo, el primer segmento aguas arriba de una línea incrementa su tamaño para alojar el agua que va entrando a la misma. Al propio tiempo, el último segmento de la línea pierde volumen debido al agua que abandona la línea, reduciéndose en un tamaño equivalente. En cuanto a los segmentos intermedios, su tamaño permanece constante.

En cada intervalo de tiempo del modelo de calidad, el contenido de cada segmento es sometido a las reacciones pertinentes. Además se determina la masa y caudal total que llega a cada nudo, al tiempo que se actualizan las posiciones de todos los segmentos considerados. A continuación se calculan las concentraciones resultantes en los nudos, para lo cual se tiene en cuenta también las posibles contribuciones desde fuentes externas. A tal fin, éstas se actualizan antes en función del tipo de modelo de mezcla definido (ver más adelante). Finalmente, para todas las tuberías que parten de un nudo, si la calidad resultante en el mismo difiere de la del último segmento de la tubería en una cantidad superior a la tolerancia definida por el usuario, se creará un nuevo segmento en el extremo aguas arriba de dicha tubería.

Inicialmente cada tubería consta de un solo segmento cuya calidad se iguala a la calidad del nudo aguas arriba. Cuando se invierte el flujo en una tubería, los distintos segmentos de que consta en ese momento se reordenan según el nuevo sentido de circulación del agua.

Modelos de Mezcla en los Depósitos

EPANET puede utilizar cuatro modelos diferentes para simular el proceso de mezcla que ocurre en los depósitos, los cuales se muestran en la Figura 3.5:

- Mezcla completa
- Mezcla en Dos Compartimentos
- Flujo en Pistón tipo FIFO
- Flujo en Pistón tipo LIFO

Cada depósito de la red puede asociarse con un modelo diferente.

El *Modelo de Mezcla Completa* (Figura 3.5 A) asume que toda el agua que entra al depósito se mezcla total e instantáneamente con el agua ya almacenada. Es el modelo de mezcla más sencillo que puede formularse, no requiere ningún parámetro extra, y la práctica demuestra que se ajusta bastante bien a un gran número de depósitos de regulación.

El *Modelo de Dos Compartimentos* (Figura 3.5 B) divide el volumen de almacenamiento del depósito en dos compartimentos, en cada uno de los cuales se admite la mezcla completa. Se supone además que las tuberías de entrada y

salida del depósito se encuentran conectadas al primer compartimento. El agua nueva que entra al depósito se mezcla con el agua contenida en el primer compartimento. Si éste está lleno, el exceso de agua pasa al segundo compartimento, donde se mezcla totalmente con el agua almacenada en él. Cuando el agua abandona el depósito, sale del primer compartimento, y si estuviera lleno, recibe una cantidad equivalente de agua del segundo compartimento. El primer compartimento pretende simular una zona de 'cortocircuito' entre el flujo que entra y el flujo que sale, mientras que el segundo compartimento representa una zona muerta. El usuario debe proporcionar en este modelo un parámetro adicional, la fracción del volumen total del depósito que corresponde al primer compartimento.

(A) Mezcla completa

(B) Mezcla de Dos Compartimentos

(C) Flujo en Pistón - FIFO (D) Flujo en Pistón - LIFO

Figura 3.5 Modelos de Mezcla en los Depósitos

El *Modelo de Flujo en Pistón tipo FIFO (First Input is First Output)* (Figura 3.5 C) supone que no hay mezcla alguna del agua mientras permanece en el depósito. Los diferentes volúmenes de agua, aun siendo contiguos, viajan de forma separada por el interior del depósito, de forma que el primer volumen en entrar será el primero en salir. Desde un punto de vista físico, este modelo resulta apropiado para simular depósitos con pantallas en su interior, y que operan con flujos continuos de entrada y salida. No se necesita ningún parámetro adicional para caracterizar este modelo de mezcla.

Finalmente, el *Modelo de Flujo en Pistón tipo LIFO (Last Input is First Output)* (Figure 3.5 D) también asume que no hay mezcla de agua entre los diferentes volúmenes que entran al depósito. Sin embargo, a diferencia del modelo anterior, los distintos volúmenes se van apilando uno sobre otro, a medida que el agua entra o sale del depósito por el fondo. Este tipo de modelo es aplicable a torres de

agua altas y estrechas, con una tubería única de entrada y salida en el fondo, y con una cantidad de movimiento del flujo entrante reducida. Como en el caso anterior, tampoco se requiere ningún parámetro adicional.

Reacciones que afectan a la Calidad del Agua

EPANET puede realizar el seguimiento del crecimiento o decrecimiento de una sustancia debido a reacciones internas, mientras ésta viaja a través de la red de distribución. Para llevar ello a cabo es necesario conocer la velocidad de reacción de la sustancia y la medida en que ésta depende de su propia concentración. Las reacciones pueden producirse en el seno del líquido, y también con el material que recubre las paredes de las tuberías, tal como se muestra en la Figura 3.6. En dicho ejemplo, se ha supuesto la presencia de cloro libre (ClOH), una parte del cual reacciona con la materia orgánica natural (MON) en el flujo principal, para dar lugar a los subproductos derivados de la desinfección (SPD), mientras que otra parte es transportado a la capa límite próxima a la pared, donde oxida al hierro (Fe) liberado por la corrosión de la tubería. Las reacciones en el seno del líquido pueden ocurrir también en los depósitos, de modo que EPANET permite al usuario tratar estas dos zonas de reacción separadamente.

Figura 3.6 Zonas de Reacción en el interior de una Tubería

Reacciones en el seno del agua

EPANET simula las reacciones que ocurren en el seno del agua mediante una cinética de orden *n*, lo que significa que la velocidad instantánea de reacción R de una sustancia (expresada en unidades de masa/volumen/tiempo) depende en cada momento de la concentración de dicha sustancia, de acuerdo con la expresión:

$$R = K_{h}C^{n}$$

donde K_b = coeficiente de reacción en el medio, C = concentración del reactivo (masa/volumen), y n = orden de la reacción. El coeficiente K_b tiene unidades de concentración elevada a la potencia (1-n) y dividido por tiempo. Su signo será positivo si la cantidad de sustancia crece con el tiempo, y negativo si decrece.

EPANET es capaz de simular también reacciones que tienden a una concentración límite, ya sea por crecimiento o decrecimiento de la sustancia. En este caso, la expresión de la velocidad de reacción tiene la forma:

$$R = K_b (C_L - C) C^{(n-1)}$$
 para $n > 0$, $K_b > 0$

$$R = K_b (C - C_L) C^{(n-1)}$$
 para $n > 0$, $K_b < 0$

donde C_L = concentración límite. Por consiguiente, se dispone de hasta tres parámetros (K_b , C_L , y n) para caracterizar las reacciones en el medio. Algunos ejemplos cuya cinética es bien conocida se recogen en la tabla siguiente (ver el Apéndice D para más ejemplos):

Modelo	Parámetros	Ejemplos
Decrecimiento de Primer Orden	$C_L = 0, K_b < 0, n = 1$	Cloro
Crecimiento de Primer Orden	$C_L > 0, K_b > 0, n = 1$	Trihalometanos
hasta la Saturación		
Cinética de Orden Cero	$C_L = 0, K_b <> 0, n = 0$	Tiempo Permanencia
Sin reacción	$C_L = 0, \ K_b = 0$	Trazas de Flúor

El valor de K_b para reacciones de primer orden puede estimarse colocando una muestra de agua en una serie de botellas de cristal no reactivo, y analizando el contenido de la sustancia en cada botella tras un tiempo de permanencia distinto para cada una. Si la reacción es de primer orden, al representar frente al tiempo el logaritmo natural de la concentración C_t en el instante *t* respecto a la concentración C_o en el instante inicial, esto es $log (C_t/C_o)$, deberá obtenerse una recta, cuya pendiente es el valor de K_b .

El coeficiente de reacción en el medio usualmente aumenta con la temperatura. La realización de varios ensayos en laboratorio con muestras a diferentes temperaturas nos permitirá valorar el efecto de ésta sobre el coeficiente de reacción.

Reacciones en la Pared

La velocidad de reacción de las sustancias que reaccionan en, o cerca de, la pared de las tuberías, puede considerarse que depende de la concentración en el seno del agua del flujo principal mediante la expresión:

$$R = (A/V)K_{w}C^{n}$$

donde K_w = coeficiente de reacción en la pared y (A/V) = superficie de contacto por unidad de volumen en el interior de la tubería (igual a 4 dividido por el diámetro de la tubería). El último término convierte la velocidad de reacción por unidad de área en velocidad por unidad de volumen. EPANET limita las opciones para la velocidad de reacción en la pared a orden 0 u orden 1, con lo que las unidades de K_w son masa/área/tiempo o bien longitud/tiempo, dependiendo del orden de la reacción. Al igual que K_b , el coeficiente K_w debe ser proporcionado por el usuario. Los valores de K_w para reacciones de primer orden pueden ir desde 0 hasta 1,5 m/día.

El coeficiente K_w debe ajustarse para tener en cuenta cualquier limitación en la transferencia de masa que pueda afectar al movimiento de reactivos y productos de reacción entre la corriente principal y la pared. EPANET tiene esto en cuenta automáticamente, en base a la difusión molecular de la sustancia considerada y el número de Reynolds del flujo. Ver el Apéndice D para más detalles. (Si se pone la difusión molecular como cero, las limitaciones de transferencia de masa serán ignoradas).

El coeficiente de reacción en la pared puede depender de la temperatura y puede también correlacionarse con la edad de la tubería y el material. En efecto, es bien sabido que con el paso del tiempo la rugosidad de las tuberías metálicas tiende a incrementarse debido a la formación de incrustaciones y tubérculos procedentes de la corrosión de las paredes. El incremento de la rugosidad da lugar a una disminución del coeficiente C de Hazen-Williams, o bien un aumento del coeficiente de rugosidad de Darcy-Weisbach, provocando en definitiva una mayor pérdida de carga en la tubería.

Existen algunas evidencias que sugieren que el mismo proceso que hace incrementar la rugosidad de la tubería con el tiempo, tiende a incrementar también la reactividad de sus paredes con algunas especies químicas, en particular con el cloro y otros desinfectantes. EPANET puede hacer depender el coeficiente K_w de cada tubería de su coeficiente de rugosidad. La expresión utilizada para ello depende de la fórmula de pérdidas empleada:

<u>Fórmula de Pérdidas</u>	<u>Fórmula Coef. Reacc. Pared</u>
Hazen-Williams	$K_w = F / C$
Darcy-Weisbach	$K_w = -F / log(\varepsilon/d)$
Chezy-Manning	$K_w = F n$

donde C = Coeficiente de pérdidas de Hazen-Williams, ε = rugosidad absoluta empleada en la fórmula de Darcy-Weisbach, d = diámetro de la tubería, n = coeficiente de rugosidad de Manning, y F = coeficiente de correlación rugosidadreacción en la pared. El coeficiente F debe obtenerse a partir de medidas de campo para cada red en particular, y su significado depende de la ecuación de pérdidas empleada. La ventaja de utilizar esta aproximación es que basta un solo parámetro, F, para hacer variar el coeficiente de reacción en la pared a través de la red de una forma razonable.

Tiempo de Permanencia y Procedencias

Además del transporte de sustancias químicas, EPANET puede también simular la evolución del tiempo de permanencia del agua en la red de distribución. El tiempo de permanencia del agua (también denominado tiempo de retención o envejecimiento), es el tiempo que permanece una determinada partícula de agua en el interior de la red. El tiempo de permanencia del agua cuando entra en la red desde un emblase o una fuente de suministro se considera cero. El cálculo de tiempos de permanencia es una forma simple de valorar la calidad del agua en la red, sin necesidad de efectuar ninguna medida. Internamente EPANET considera el tiempo de permanencia como una sustancia reactiva cuyo crecimiento responde a una cinética de orden 0, y cuya constante de reacción es igual a 1 (esto es, cada segundo que pasa el agua se convierte en un segundo más 'vieja').

EPANET también puede realizar análisis de procedencias. El análisis de procedencias efectúa un seguimiento en el tiempo del porcentaje de agua que alcanza cada nudo de la red, procedente de un nudo determinado. El nudo origen puede ser cualquier nudo de la red, incluyendo depósitos y embalses. Internamente EPANET considera dicho nudo como una fuente de inyección permanente de una sustancia no reactiva, que entra en la red con una concentración del 100 %. El análisis de procedencias es una herramienta útil para estudiar el alcance del agua en la red procedente de un fuente de suministro, cuando la red se alimenta desde más de un punto. Al mismo tiempo nos informa sobre cómo se lleva a cabo el proceso de mezcla, y cómo el porcentaje de mezcla varía espacialmente a lo largo del tiempo.

En el presente capítulo se pasa revista a las principales características del entorno de trabajo de EPANET. En particular, se describe la Barra del Menú Principal, la Barra de Herramientas y la Barra de Estado, así como las tres ventanas utilizadas con mayor frecuencia: el Esquema de la red, el Visor y el Editor de Propiedades. Finalmente se muestra cómo fijar las preferencias que configurarán el modo de trabajo del programa.

4.1 Introducción

La figura siguiente muestra el entorno de trabajo básico de EPANET. En ella pueden observarse los siguientes elementos de la interface: una *Barra de Menú*, dos *Barras de Herramientas*, una *Barra de Estado*, la ventana del *Esquema de la Red*, la ventana del *Visor* y la ventana del *Editor de Propiedades*. Cada uno de estos elementos se describe con detalle en las secciones siguientes.

4.2 La Barra de Menús

La *Barra de Menús* ocupa la parte superior de la ventana principal de EPANET, y contiene un conjunto de menús utilizados para controlar el funcionamiento del programa. Estos son:

- Menú de Archivo
- Menú de Edición
- Menú Ver
- Menú de Proyecto
- Menú de Informes
- Menú de Ventanas
- Menú de Ayuda

Menú de Archivo

El *Menú de Archivo* contiene los comandos utilizados para abrir y guardar los archivos de datos, así como para imprimir. Estos son:

Comando	Descripción
Nuevo	Crea un nuevo proyecto de EPANET
Abrir	Abre un proyecto existente
Guardar	Guarda el proyecto actual
Guardar como	Guarda el proyecto actual con otro nombre
Importar	Importa los datos de la red o de su esquema desde otro archivo
Exportar	Exporta los datos de la red o de su esquema a otro archivo
Preparar Página	Fija los márgenes, encabezados y pies de página para imprimir
Vista Previa	Muestra una vista previa de la ventana actual
Imprimir	Imprime la ventana actual
Preferencias	Establece las preferencias para el modo de trabajo del programa
Salir	Sale de EPANET

Menú de Edición

El *Menú de Edición* contiene los comandos utilizados para editar y copiar. Estos son:

Comando	Descripción
Copiar a	Copia el contenido de la ventana activa actual (esquema, informe, gráfico o tabla) al portapapeles o a un archivo
Seleccionar Objeto	Permite seleccionar un objeto del esquema de la red
Seleccionar Vértice	Permite seleccionar los vértices del trazado de las tuberías sobre el esquema de la red
Seleccionar Región	Permite seleccionar una región sobre el esquema de la red
Seleccionar Todo	Selecciona toda el área ocupada por el esquema de la red
Editar Grupo	Edita una propiedad elegida para el grupo de objetos que caen dentro de la región delimitada sobre el esquema

Menú Ver

Las opciones del Menú Ver controlan cómo se visualiza el esquema de la red. Estas son:

Comando	Descripción
Dimensiones	Permite modificar las dimensiones del esquema y sus unidades
Mapa de Fondo	Permite visualizar un mapa de fondo
Desplazar	Permite desplazar el esquema de la red
Acercar	Permite acercar el esquema de la red
Alejar	Permite alejar el esquema de la red
Encuadre	Redibuja el esquema completo de la red
Buscar	Localiza un elemento dado de la red y lo centra
Consultar	Localiza los elementos de la red que cumplen un criterio dado
Vista General	Activa/desactiva la visualización de un mapa global de la red
Leyendas	Activa/desactiva la visualización de las leyendas y permite su edición
Barra Herramientas	Activa/desactiva la visualización de las barras de herramientas
Opciones del Esquema	Fija las opciones para la visualización del esquema

Menú de Proyecto

El *Menú de Proyecto* incorpora los comandos relacionados con el análisis del proyecto en curso. Estos son:

Comando	Descripción
Resumen	Proporciona un resumen de las características del proyecto
Valores por Defecto	Permite editar las propiedades por defecto del proyecto
Datos Calibración	Maneja los ficheros de datos para la calibración de la red
Opciones de Cálculo	Permite editar las diversas opciones de cálculo
Calcular	Realiza la simulación

Menú de Informes

El *Menú de Informes* contiene los comandos utilizados para visualizar los resultados de la simulación en diversos formatos. Estos comandos son:

Comando	Descripción
Estado	Muestra los cambios habidos en el estado de los elementos de la red a la largo de la simulación
Energías	Proporciona la energía consumida por cada bomba
Calibración	Compara los valores medidos con los calculados mediante la simulación
Reacciones	Informa sobre las velocidades medias de reacción en los distintos elementos de la red
Completo	Crea un informe completo de los resultados para todos los nudos y líneas, en cada uno de los instantes de la simulación, y los guarda en un fichero de texto
Gráficos	Crea curvas de evolución, perfiles longitudinales, curvas de dis-tribución y mapas de isolíneas para la magnitud seleccionada
Tablas	Crea una tabla con los valores numéricos de las magnitudes elegidas, para los nudos y líneas seleccionados
Opciones	Controla el estilo de presentación de informes, gráficas o tablas

Menú de Ventanas

El Menú de Ventanas contiene los siguientes comandos:

Comando	Descripción
Organizar	Reorganiza todas las ventanas hijas dentro de la ventana principal
Cerrar Todo	Cierra todas las ventanas abiertas (excepto la del Esquema y la del Visor)
Lista de Ventanas	Lista todas las ventanas abiertas, y señala la ventana activa actual

Menú de Ayuda

El *Menú de Ayuda* contiene los comandos dirigidos a obtener la ayuda requerida durante el uso de EPANET. Estos son:

Comando	Descripción
Temas de Ayuda	Muestra una ventana con los temas de ayuda de la aplicación
Unidades	Lista las unidades de medida para todas las magnitudes utilizadas en EPANET
Novedades	Informa de las novedades introducidas en la versión 2.0
Guía Rápida	Ofrece una breve introducción para el uso de EPANET
A cerca de	Muestra información sobre la versión de EPANET en uso, y la traducción al español

Se puede también acceder a la ayuda en línea desde los diferentes contextos, presionando la tecla F1.

4.3 Las Barras de Herramientas

Las *Barras de Herramientas* proporcionan un acceso rápido a los comandos utilizados con mayor frecuencia. Se dispone de dos barras de herramientas:

- La Barra de Herramientas Estándar
- La Barra de Herramientas del Esquema

Las barras de herramientas pueden ajustarse debajo de la barra del Menú Principal o bien ser arrastradas a cualquier lugar del espacio de trabajo de EPANET. Cuando se separan de la barra de Menús pueden también redimensionarse. Además, pueden hacerse visibles u ocultarse seleccionando la opción de Menú **Ver** >> **Barra Herramientas**.

La Barra de Herramientas Estándar

La *Barra de Herramientas Estándar* contiene los botones para el acceso rápido a los comandos más usados.

- Crea un proyecto nuevo de EPANET (**Archivo** >> **Nuevo**)
- Abre un proyecto existente (Archivo >> Abrir...)
- Guarda el proyecto actual (Archivo >> Guardar)
- Imprime la ventana activa actual (Archivo >> Imprimir)
- Copia los elementos seleccionados de la ventana actual al portapapeles o a un fichero (Edición >> Copiar a...)
- **X** Borra el elemento actualmente seleccionado
- Busca un determinado elemento sobre el esquema de la red (Ver >> Buscar...)
- Ejecuta una simulación (**Proyecto** >> **Calcular**)
- Realiza una consulta visual sobre los elementos de la red (Ver >> Consultar...)
- Crea una nueva ventana gráfica de resultados (**Informes** >> **Gráficos...**)
- Crea una nueva ventana de resultados numéricos (**Informes** >> **Tablas...**)
- Modifica las opciones de la ventana activa actual (Ver >> Opciones del Esquema... ó Informes >> Opciones...)

La Barra de Herramientas del Esquema

La *Barra de Herramientas del Esquem*a contiene una serie de botones para facilitar la edición y manipulación del Esquema de la Red.

- Selecciona un objeto del esquema de la red (Edición >> Seleccionar Objeto)
- Selecciona los vértices de las líneas (Edición >> Seleccionar Vértice)
- Delimita una región sobre el esquema de la red (Edición >> Seleccionar Región)
- \Leftrightarrow Permite desplazar el esquema de la red (Ver >> Desplazar)
- $\textcircled{\textbf{A}} \qquad \text{Acerca el esquema de la red (Ver >> Acercar)}$
- Aleja el esquema de la red (Ver >> Alejar)
- **Redibuja el esquema completo de la red (Ver >> Encuadre)**
- Añade un Nudo de Caudal sobre el esquema de la red
- Añade un Embalse sobre el esquema de la red
- Añade un Depósito sobre el esquema de la red
- H Añade una Tubería sobre el esquema de la red
- Añade una Bomba sobre el esquema de la red
- Añade una Válvula sobre el esquema de la red
- T Añade un Rótulo sobre el esquema de la red

4.4 La Barra de Estado

La *Barra de Estado* está situada al pie del entorno de trabajo de EPANET y se divide en cinco secciones, las cuales ofrecen la siguiente información:

- **Long-Auto** indica si el cálculo automático de la longitud de las tuberías está activado o desactivado
- Unidades de Caudal muestra las unidades de caudal actuales
- Nivel de Zoom muestra el nivel de zoom actual del esquema (100 % corresponde a la vista completa)
- Estado de la Simulación se representa mediante el icono de un grifo, con el siguiente significado:
 - si no sale agua, los resultados no están disponibles
 - si sale agua, los resultados son válidos y están disponibles
 - si el grifo aparece roto, los resultados están disponibles pero pueden no ser válidos porque algún dato ha sido modificado.
- **Posición XY** muestra la posición del puntero del ratón, en las coordenadas del esquema.

4.5 El Esquema de la Red

El *Esquema de la Red* es una representación esquemática en dos dimensiones de los diferentes componentes de la red. La localización de los objetos y las distancias entre ellos no tienen porqué corresponderse con la escala real. Las propiedades seleccionadas de estos objetos, como por ejemplo la calidad del agua en los nudos o la velocidad de circulación por las tuberías, pueden mostrarse en una escala de colores. Los códigos de colores se describen en una leyenda, y pueden modificarse. El esquema puede ampliarse añadiendo nuevos objetos, mientras que los ya existentes pueden editarse, borrarse o restituirse.

A efectos de referencia, puede también incorporarse un dibujo de fondo detrás del esquema, conteniendo información sobre calles o curvas de nivel. El esquema puede ampliarse hasta cualquier escala y desplazarse de un extremo a otro. Los nudos y líneas pueden dibujarse en diferentes tamaños, se pueden añadir símbolos para representar los objetos, flechas para indicar el sentido del flujo, así como asociar etiquetas a los elementos de la red para mostrar su identificativo o el valor numérico de la magnitud elegida. Finalmente, el esquema puede ser impreso, copiado al portapapeles de Windows o exportado como fichero DXF o bien como fichero metafile de Windows.

4.6 El Visor de Datos

El *Visor de Datos* (ver figura) es accesible desde la pestaña de *Datos* de la ventana del Visor. Permite acceder a los diferentes objetos pertenecientes a la red en estudio, clasificados por categorías (Nudos de Caudal, Tuberías, etc). Los botones que figuran del pie de la ventana se utilizan para añadir, borrar o editar dichos objetos.

4.7 El Visor del Esquema

El *Visor del Esquema* (ver figura) es accesible desde la pestaña del *Esquema* de la ventana del Visor. Permite seleccionar las magnitudes e instante de tiempo a visualizar mediante códigos de colores sobre el Esquema de la Red. También contiene los controles que permiten ver los resultados mediante animación.

Los Botones disponibles para controlar la animación son los siguientes::

- •
- Rebobinar (volver al instante inicial)
- Animar retrocediendo en el tiempo

Parar la animación
Animar avanzando

Animar avanzando en el tiempo

La barra de deslizamiento que se encuentra debajo de los botones controla la velocidad de animación.

4.8 El Editor de Propiedades

Tubería 21		×
Propiedad	Valor	
*ID Tubería	21	
*Nudo Inicial	21	
*Nudo Final	22	
Descripción		
Etiqueta	1965	
*Longitud	1610	
*Diámetro	250	
*Rugosidad	1	•

El *Editor de Propiedades* (ver figura) se utiliza para editar las propiedades de los nudos y líneas de la red, el contenido de los rótulos y también las opciones de cálculo. Se abre al pulsar dos veces con el ratón uno de estos objetos (sobre el Esquema de la Red o el *Visor de Datos*) o bien al pulsar el botón Editar del Visor de Datos.

A continuación se dan algunas instrucciones para el uso del Editor.

- El Editor es una tabla con dos columnas, una para el nombre de la propiedad y otra para el valor de la misma.
- El ancho de las columnas puede modificarse alargando o acortando las cabeceras de las mismas con el ratón
- La ventana del Editor puede moverse o redimensionarse siguiendo los procedimientos normales de Windows.
- Un asterisco junto al nombre de la propiedad indica que ésta es requerida y su valor no puede dejarse en blanco.
- Dependiendo de la propiedad elegida, el contenido del campo puede ser alguno de los siguientes:
 - una caja de texto, donde se debe escribir un valor
 - una lista de opciones desplegable, de las cuales debe elegirse una
 - un botón con puntos suspensivos, cuya pulsación llama a un editor especializado
 - una etiqueta de solo lectura, para mostrar los resultados obtenidos
- La propiedad del Editor actualmente seleccionada se resalta mostrando su fondo en blanco.
- Se puede navegar entre las distintas propiedades mediante el ratón o utilizando las flechas *Arriba* y *Abajo* del teclado.
- Para comenzar a editar la casilla seleccionada introducir directamente un nuevo valor o pulsar la tecla *Intro*.
- Para que EPANET acepte el valor introducido basta pulsar la tecla *Intro* o moverse a otra casilla; para cancelar, pulsar *Esc*.
- Pulsando el botón Cerrar de la esquina derecha de la barra del título, se cerrará el Editor.

4.9 Preferencias del Programa

Las *Preferencias del Programa* permiten la personalización de ciertas características del mismo. Para establecer las preferencias del programa seleccionar la opción **Preferencias** del menú **Archivo**. Se abrirá un diálogo de Preferencias con dos pestañas, una para las *Preferencias Generales* y otra para la *Preferencias de Formato*.

Preferencias Generales

Las siguientes preferencias pueden ser fijadas desde la página *General* del diálogo Preferencias:

Preferencia	Descripción
Negritas	Activa o desactiva el uso de textos en negrita para todas las ventanas de nueva creación
Parpadeo Selecc. Esquema	Activa o desactiva el parpadeo del nudo, línea o rótulo seleccionado sobre el esquema de la red
Etiquetas Flotantes	Activa o desactiva la presentación en una caja de texto emergente, del indicativo ID y el valor de la magnitud actual de un nudo o línea, al paso del cursor sobre él.
Confirmar Borrado	Activa o desactiva la aparición de un diálogo de confirmación antes de borrar cualquier objeto
Copia Seguridad Automática	Activa o desactiva la realización de una copia de seguridad, etiquetada con la extensión . <i>bak</i> , cada vez que se abre un nuevo proyecto
Directorio Temporal	Nombre del directorio utilizado por EPANET para escribir los archivos temporales

Nota: El Directorio Temporal debe ser un directorio (carpeta) válido, con privilegios de escritura para el usuario, y debe tener suficiente espacio para guardar los archivos temporales, los cuales pueden alcanzar fácilmente varias decenas de megabytes durante la simulación de grandes redes. Por defecto se utiliza el directorio TEMP de Windows (normalmente c:\Windows\TEMP). En la versión española, EPANET intentará encontrar automáticamente un directorio no protegido contra escritura.

Preferencias	×
General Formatos	_
Negritas	
🔽 Parpadeo Selecc. Esquema	
Etiquetas Flotantes	
🔽 Confirmar Borrado	
🔽 Copia Seguridad Automática	
Directorio Temporal	
C:\Documents and Setting	
Seleccionar	
Aceptar Cancelar Ayuda]

Preferencias de Formato

La página de *Formato* del diálogo de Preferencias permite controlar el número de decimales con que se mostrarán los resultados de las variables calculadas. Para seleccionar la magnitud asociada a un nudo o línea, cuyos decimales se desea fijar, utilizar las listas desplegables. Para fijar el número de decimales en cada caso, introducir éste directamente en la caja de texto correspondiente o utilizar las ruedecillas de avance y retroceso. El número de decimales utilizados para los parámetros de entrada, tales como el diámetro o la longitud de una tubería, serán los introducidos por el usuario.

Preferencias X
General Formatos
Variable de Nudo Decimales Demanda 💌 2 🛫
Variable de Línea Decimales Caudal 💌 2 美
Seleccionar el número de decimales a utilizar en la presentación de resultados
Aceptar Cancelar Ayuda

En este capítulo se muestra cómo EPANET utiliza los archivos de proyecto para almacenar los datos de una red. También se explica cómo fijar ciertas opciones por defecto del proyecto y cómo registrar en el proyecto los datos de calibración (medidas observadas), para posteriormente evaluar los resultados del modelo.

5.1 Abrir y Cerrar Archivos de Proyecto

Los Archivos de Proyecto contienen toda la información utilizada para construir el modelo de una red. Se caracterizan normalmente por tener la extensión .NET .

Para crear un nuevo proyecto:

- Seleccionar Archivo >> Nuevo en la Barra de Menús o pulsar el botón de la Barra de Herramientas Estándar.
- 2. Antes de crear el nuevo proyecto se preguntará si se desea guardar el proyecto actual (caso de existir y haber realizado cambios en él).
- 3. Seguidamente se crea un nuevo proyecto sin nombre, con todas las opciones fijadas en sus valores por defecto.

Cuando se arranca EPANET por primera vez se crea automáticamente un proyecto nuevo.

Para abrir un proyecto existente almacenado en disco:

- Seleccionar Archivo >> Abrir... de la Barra de Menús, o bien pulsar el botón i de la Barra de Herramientas Estándar.
- 2. El programa preguntará si se quiere guardar el proyecto actual (si existe y se han realizado cambios en él).
- 3. Seleccionar el fichero que se desea abrir, en el diálogo *Abrir un Proyecto*. Se puede elegir entre un archivo de tipo Proyecto previamente almacenado desde EPANET (usualmente con la extensión .NET) o un archivo de Texto previamente exportado desde EPANET o bien confeccionado directamente por el usuario (usualmente con la extensión .INP)¹⁰. EPANET reconoce los ficheros por su contenido, y no por su nombre.
- **4.** Pulsar **Abrir** para cerrar el diálogo y abrir el fichero seleccionado.

Para guardar un proyecto, manteniendo su nombre actual:

 Seleccionar Archivo >> Guardar de la Barra de Menús, o bien pulsar el botón la Barra de Herramientas Estándar.

¹⁰ Los ficheros .INP de la versión 1.1 son también reconocidos (NdT)

Para guardar un proyecto utilizando un nombre diferente:

- Seleccionar Archivo >> Guardar como... desde la Barra de Menús.
- 2. Desde el diálogo *Guardar el Proyecto como*, seleccionar la carpeta y el nombre de fichero con el cual se desea guardar el proyecto.
- **Nota:** Los proyectos se almacenan siempre como ficheros binarios .NET. Para guardar los datos de un proyecto en formato ASCII legible, utilizar el comando **Exportar >> Red...** del Menú **Archivo**.

5.2 Valores por Defecto del Proyecto

Cada proyecto tiene un conjunto de valores por defecto, que serán adoptados a menos que el usuario los modifique. Estos valores por defecto pueden clasificarse en tres categorías:

- Identificativos ID por defecto (son las etiquetas utilizadas para identificar los nudos y líneas en el momento en que se crean)
- Propiedades por defecto de nudos y líneas (p.ej., cota de un nudo, longitud, diámetro o rugosidad de una tubería, etc)
- Opciones hidráulicas por defecto (p.ej., sistema de unidades, ecuación de pérdidas, etc.)
- **Nota:** Un cambio de unidades en el transcurso de una simulación no conlleva la conversión de los valores ya introducidos a las nuevas unidades. (NdT)

Para fijar los valores por defecto de un proyecto:

- Seleccionar Proyecto >> Valores por Defecto... desde la Barra de Menús.
- 2. Se mostrará seguidamente un diálogo de *Valores por Defecto* con tres páginas, una por cada una de las categorías anteriores.
- **3.** Validar la casilla situada en la parte inferior izquierda del diálogo, si se desea mantener las opciones elegidas para futuros proyectos.
- 4. Pulsar el botón Aceptar para validar los cambios realizados.

A continuación se analizan las particularidades de los distintos valores por defecto, por categorías.

Identificativos ID por Defecto

La figura 5.1 muestra la página de *Identificativos ID* del diálogo de *Valores por Defecto*. En ella se establece el modo en que EPANET irá asignando automáticamente los identificativos por defecto a los diversos componentes de la red, a medida que son creados. Para cada tipo de objeto se puede introducir un prefijo, o bien dejar el campo en blanco si se pretende que el identificativo asignado sea simplemente un número. Finalmente, en la última celda de la página se establece el incremento a utilizar para crear el nuevo número, el cual será añadido al prefijo establecido más arriba para cada componente. Por ejemplo, si

definimos el prefijo Q para caracterizar a los Nudos de Caudal, y fijamos el incremento en 5, éstos irán recibiendo los identificativos Q5, Q10, Q15, etc a medida que son creados. Una vez creado un objeto, se puede utilizar posteriormente el *Editor de Propiedades* para modificar su ID si fuera necesario.

alores por Defecto	2
Identificativos ID Propi	edades Opc. Hidráulicas
Objeto	Prefijo ID
Nudos de Caudal	
Embalses	
Depósitos	
Tuberías	
Bombas	
Válvulas	
Curvas Modulación	
Curvas Comportamiento	
Incremento ID	1
Guardar Valores por De	fecto para futuros proyetos

Figura 5.1 Página para establecer los Identificativos ID por Defecto

Propiedades por Defecto de Nudos y Líneas

En la figura 5.2 se muestra la página de *Propiedades* del diálogo de *Valores por Defecto*. En ella se fijan los valores por defecto de algunas propiedades de nudos y líneas, que serán adoptadas en el momento en que éstos se crean. Dichas propiedades son:

- La Cota de los nudos
- El Diámetro de los depósitos
- El Nivel Máximo del agua en los depósitos
- La Longitud de las tuberías
- La opción Longitud Automática para las tuberías
- El Diámetro de las tuberías
- La Rugosidad de las tuberías

Cuando se activa la propiedad Longitud Automática, la longitud de las tuberías es calculada automáticamente en el momento en que éstas son añadidas o restituidas. Cualquiera de estas propiedades asignadas por defecto puede modificarse posteriormente mediante el *Editor de Propiedades*.

Identificativos ID Pro	piedades Opc. Hidráulicas
Propiedad	Valor por Defecto
Cota Nudos	0
Diámetro Depósitos	20
Nivel Máx. Depósitos	4
Longitud Tuberías	100
Longitud Automática	No
Diámetro Tuberías	200
Rugosidad Tuberías	0,1
Guardar Valores por D	efecto para futuros proyetos

Figura 5.2 Página para establecer las Propiedades por Defecto

Opciones Hidráulicas por Defecto

La tercera página del diálogo de *Valores por Defecto* se destina a establecer determinadas opciones de cálculo por defecto. Contiene las mismas opciones que aparecen en el diálogo *Opciones Hidráulicas*, accesible desde la ventana del *Visor* (ver Sección 8.1) o mediante el comando **Proyecto** >> **Opciones de Cálculo...** de la Barra de Menús. Estas opciones se han recogido en el diálogo de *Valores por Defecto*, para poder ser guardadas y utilizadas tanto en el proyecto actual como en futuros proyectos.

Las Opciones Hidráulicas más importantes a verificar cuando se crea un nuevo proyecto son: las Unidades de Caudal, la Fórmula de Pérdidas de Carga y la Curva de Modulación por Defecto. La opción relativa a las Unidades de Caudal determina al mismo tiempo si las restantes magnitudes del proyecto serán expresadas en unidades convencionales US o en unidades métricas SI. La opción relativa a la Fórmula de Pérdidas de Carga determina el tipo de coeficiente de rugosidad a proporcionar para cada tubería. Finalmente, la Curva de Modulación asignada por Defecto será utilizada para fijar la modulación de la demanda en todos aquellos nudos en que ésta no se declare explícitamente.
5.3 Datos de Calibración

EPANET permite comparar los resultados de una simulación con las medidas de campo, contrastando las *Curvas de Evolución* de un cierta magnitud en un determinado nudo con los valores de campo correspondientes, o mediante *Informes de Calibración* específicos, en los cuales se analizan globalmente los resultados de la comparación para un conjunto de puntos de medida en la red. Para poder efectuar la comparación, las medidas de campo deben alojarse en ficheros de texto, y éstos a su vez deben declararse previamente en el entorno de proyecto de EPANET.

Ficheros de Calibración

Un *Fichero de Calibración* es un fichero de texto que contiene los valores medidos de una determinada magnitud en uno o más puntos de la red, a lo largo de un cierto periodo de tiempo. El fichero proporciona una serie de valores observados, los cuales pueden contrastarse con los resultados obtenidos por simulación. Para contrastar diferentes magnitudes (p. ej. presiones, flúor, cloro, caudal, etc) o bien la misma magnitud en distintos periodos de muestreo, se deben utilizar ficheros diferentes. Cada línea del fichero debe contener la siguiente información:

- *Localización* Identificativo ID del elemento de la red sobre el cual se ha efectuado la medida
- Instante Tiempo (en horas) en que se efectuó la medida
- *Valor* Resultado de la medida

La medida del tiempo debe estar referida a la hora de comienzo de la simulación, con respecto a la cual se desea contrastar el Fichero de Calibración. El instante de tiempo puede introducirse bien como número decimal (p.ej. 27.5) o con el formato horas:minutos (p.ej. 27:30)¹¹. Para los datos referentes a una simulación en régimen permanente, el valor del tiempo será 0. Se pueden añadir líneas de comentario, anteponiéndoles un punto y coma (;). Para una serie de medidas realizadas sobre el mismo punto no es necesario repetir el ID de éste cada vez, pudiendo dejarse la columna correspondiente en blanco, una vez declarado el ID en la primera línea. A continuación se muestra un extracto de un Fichero de Calibración.

;Medidas de ;Localiz.	flúor como Instante	trazador Valor
, N1	0	0.5
	6.4	1.2
	12.7	0.9
N2	0.5	0.72
	5.6	0.77

¹¹ Para expresar los valores numéricos en el Fichero de Calibración se debe utilizar el punto decimal, y no la coma.

Registro de los Datos de Calibración

Para registrar en el entorno del proyecto los datos de un Fichero de Calibración:

- Seleccionar Proyecto >> Datos Calibración... desde la Barra de Menús.
- 2. En el diálogo *Datos de Calibración* mostrado en la figura 5.3, seleccionar la celda de texto junto al parámetro cuyos valores se quiere registrar.
- **3.** Introducir el nombre del *Fichero de Calibración* para dicho parámetro, o bien pulsar el botón **Examinar** para localizarlo.
- **4.** Pulsar el botón **Editar** si se desea abrir el *Fichero de Calibración* con el Bloc de Notas de Windows para editarlo.
- **5.** Repetir los pasos 2 a 4 para cualquier otro parámetro del que se posean datos de calibración.
- 6. Pulsar el botón **Aceptar** para aceptar los nombre de los ficheros introducidos.

Datos de Calibra	ación	×
Parámetro	Nombre del Fichero de Calibración	9
Demanda		<u>E</u> xaminar
Altura		
Presión		r 🗹 🛛
Calidad	Red2-fl.dat	E <u>d</u> itar
Caudal		
Velocidad		
	Aceptar Cancelar 4	Ayuda

Figura 5.3 Diálogo de Datos de Calibración

5.4 El Resumen del Proyecto

Para ver un *Resumen* del contenido del proyecto actual, seleccionar la opción **Proyecto** >> **Resumen...** de la Barra de Menús. Aparecerá el diálogo *Resumen del Proyecto*, en el cual se puede introducir o editar el título del proyecto, y añadir también un texto adicional describiendo los aspectos más relevantes del mismo. Cuando se abra la próxima vez un proyecto previamente almacenado, en el diálogo Abrir Proyecto se mostrarán ambos textos, en un recuadro a la derecha del nombre del fichero seleccionado en cada momento. Ello resulta sumamente útil para localizar el fichero buscado. En el diálogo del Resumen del Proyecto se muestran también determinados datos globales del mismo, tales como el número de nudos, tuberías, bombas, etc. EPANET utiliza diversos tipos de objetos para construir el modelo de una red de distribución. Estos objetos son accesibles directamente desde el esquema de la red o bien desde la página del Datos de la ventana del Visor. En este capítulo se describe la naturaleza de dichos objetos y la manera de crear, seleccionar, editar, borrar y reconfigurar los mismos.

6.1 Tipos de Objetos

Un modelo de EPANET se compone de objetos físicos, los cuales aparecen representados sobre el esquema de la red, y objetos sin representación física, los cuales contienen información sobre el comportamiento y operación de la red. Todos estos objetos pueden clasificarse en las siguientes categorías:

(1) Nudos

- (a) Nudos de Caudal
- (b) Embalses
- (c) Depósitos
- (2) Líneas
 - (a) Tuberías
 - (b) Bombas
 - (c) Válvulas
- (3) Rótulos
- (4) Curvas de Comportamiento
- (5) Curvas de Modulación
- (6) Leyes de Control
 - (a) Simples
 - (b) Basadas en Reglas

Todos estos objetos, a excepción de los Rótulos, han sido ya descritos en los apartados 3.1 y 3.2 Los Rótulos son anotaciones de texto que pueden colocarse en cualquier punto dentro del esquema de red, para identificar ciertas zonas o proporcionar otra información. Pueden declararse como *Visualizadores de Resultados* y asociarse a un nudo o línea, lo que permite observar en ellos el valor actual de la magnitud seleccionada en el Visor del Esquema, para dicho nudo o línea.

6.2 Añadir Objetos

Añadir un Nudo

Para añadir un Nudo utilizando la Barra de Herramientas del Esquema de la Red:

Pulsar el botón de la Barra del Esquema correspondiente al tipo de nudo a añadir (*Nudo de Caudal*, *Embalse*, o *Depósito*), si no se encuentra ya activo.

2. Mover el ratón hasta el punto deseado del área de dibujo, y pulsar el botón izquierdo.

Para añadir un Nudo utilizando la ventana del Visor:

- 1. Seleccionar el tipo de nudo a añadir (*Nudo de Caudal, Embalse o Depósito*) de la lista de Categorías de Objetos del Visor de Datos.
- 2. Pulsar el botón Añadir
- **3.** Introducir las coordenadas del punto con el *Editor de Propiedades* (opcional).

Añadir una Línea

Para añadir una *Línea Recta o Poligonal* utilizando la Barra de Herramientas del Esquema de la Red:

- Pulsar el botón de la Barra del Esquema correspondiente al tipo de línea a añadir (*Tubería*, *Bomba*, o *Válvula*), si no se encuentra ya activo.
- 2. Sobre el esquema de la red, pulsar con el ratón en el nudo inicial de la línea, el cual deberá ser alguno de los ya definidos.
- 3. Mover el ratón en la dirección del nudo final, marcando con el botón izquierdo los puntos intermedios necesarios para guiar el trazado de la línea.
- **4.** Pulsar con el botón izquierdo del ratón sobre el nudo final de la línea, que deberá ser también alguno de los ya definidos, a excepción del nudo inicial.

Al presionar el botón derecho del ratón o la tecla *Esc* mientras se está dibujando una línea, ésta será anulada.

Para añadir una Línea Recta utilizando la ventana del Visor:

- 1. Seleccionar el tipo de línea a añadir (*Tubería, Bomba o Válvula*) de la lista de Categorías de Objetos del Visor de Datos.
- 2. Pulsar el botón Añadir
- 3. Introducir los ID de los nudos extremos desde el *Editor de Propiedades.*

Añadir un Rótulo

Para añadir un Rótulo sobre el esquema de la red:

- 1. Pulsar el botón *Rótulo* de la Barra de Herramientas del Esquema de la Red.
- 2. Pulsar el botón izquierdo del ratón sobre el punto del área del dibujo en que se desea fijar el comienzo del rótulo.
- 3. Introducir el texto del rótulo.
- 4. Pulsar la tecla Intro.

Añadir una Curva de Comportamiento

Para añadir una Curva de Comportamiento a la base de datos de la red:

- Seleccionar *Curva Comport*. en la lista de Categorías de Objetos del Visor de Datos.
- 2. Pulsar el botón *Añadir* de la ventana del Visor.
- **3.** Editar la curva utilizando el *Editor de Curvas de Comportamiento* (ver más adelante).

Añadir una Curva de Modulación

Para añadir una Curva de Modulación o Patrón a la base de datos de la red:

- 1. Seleccionar *Curva Modulac*. en la lista de Categorías de Objetos del Visor de Datos.
- 2. Pulsar el botón Añadir de la ventana del Visor.
- **3.** Editar la curva de modulación utilizando el *Editor de Curvas de Modulación* (ver más adelante).

Utilización de Ficheros de Texto

Además de añadir individualmente los objetos de modo interactivo, se puede también importar un fichero de texto conteniendo una lista de nudos, con sus identificativos ID y sus coordenadas, junto a una lista de líneas, con sus identificativos ID y los de los nudos que conecta (ver apartado 11.4 – *Importación Parcial de la una Red*).

6.3 Selección de Objetos

Para seleccionar un objeto sobre el esquema:

1. Asegurarse primero que el cursor se encuentra en modo *Selección* (en forma de flecha apuntando hacia la izquierda). Para

cambiar a este modo pulsar el botón *Seleccionar Objeto* de la Barra del Esquema o bien elegir la opción **Seleccionar Objeto** del Menú **Edición**.

2. Pulsar con el ratón sobre el objeto deseado del esquema.

Para seleccionar un objeto utilizando la ventana del Visor:

- 1. Seleccionar la categoría del objeto, de la lista desplegable del Visor de Datos.
- 2. Seleccionar el objeto deseado de la lista que aparece debajo del desplegable.

6.4 Edición de los Objetos Visibles

Para editar las propiedades de los objetos que pueden observarse sobre el esquema de la red (Nudos de Caudal, Embalses, Depósitos, Tuberías, Bombas, Válvulas o Rótulos) se emplea el *Editor de Propiedades* (ver apartado 4.8). Para editar cualquiera de ellos, seleccionarlo primero sobre el Esquema de la Red o

desde el Visor de Datos, y pulsar a continuación el botón *Editar* del Visor (o bien realizar simplemente una doble pulsación sobre el objeto seleccionado). En las Tablas 6.1 a 6.7 se describen las propiedades de cada uno de los objetos, según su tipo.

Nota: Las unidades en que se expresan las propiedades de cada objeto dependen de las Unidades de Caudal elegidas. Si se eligen pies cúbicos, galones o acres·pies, entonces se emplearán unidades US para expresar las restantes cantidades. Si para expresar el caudal se eligen litros o metros cúbicos, entonces se emplearán unidades SI para el resto de magnitudes. Las Unidades de Caudal forman parte de las *Opciones Hidráulicas*, accesibles desde el menú **Proyecto** >> **Valores por Defecto**. Las unidades empleadas para cada una de las magnitudes se detallan en el Apéndice A.

PROPIEDAD	DESCRIPCIÓN
ID Nudo Caudal	Etiqueta que identifica unívocamente a cada nudo. Puede contener hasta 15 caracteres numéricos o alfanuméricos. No puede coincidir con el ID de ningún otro nudo. Esta propiedad es obligatoria.
Coordenada X	Posición horizontal del nudo sobre el esquema, medida en las unidades del mismo. Si se deja en blanco, el nudo no será representado en el esquema.
Coordenada Y	Posición vertical del nudo sobre el esquema, medida en las unidades del mismo. Si se deja en blanco, el nudo no será representado en el esquema.
Descripción	Cadena de texto opcional, que describe alguna información relevante del nudo.
Etiqueta	Cadena de texto opcional (sin espacios), utilizada para clasificar el nudo dentro de una categoría (p. ej. un piso de presión).
Cota	Cota del nudo en metros (pies), respecto a un nivel de referencia común para toda la red. Es una propiedad requerida. La cota se utiliza sólo para calcular la presión en el nudo. No afecta a ningún otro resultado.
Demanda Base	Consumo medio o nominal en el nudo para el principal tipo de consumidor, expresado en las unidades de caudal actuales. Un valor negativo indica que el caudal es entrante al nudo. Si se deja en blanco, el caudal se supone cero.
Curva Modul. Demanda	Identificativo ID de la Curva de Modulación empleada para caracterizar la variación de la demanda en el tiempo, para el principal tipo de consumidor. La curva de modulación está configurada por los factores que, aplicados sobre la Demanda Base, nos determinan la demanda real en cada instante. Si se deja en blanco, se toma la Curva de Modulación por Defecto asignada en las <i>Opciones Hidráulicas</i> (ver apartado 8.1)
Tipos de Demanda	Número de tipos de usuario distintos considerados en el nudo. Pulsando el botón con puntos suspensivos (o presionando la tecla Intro) se abre el <i>Editor de</i> <i>Demandas</i> , que permite asignar las demandas base y sus curvas de modulación para los distintos tipos de usuarios considerados en el nudo. Si se va a considerar una sola demanda, ignorar esta opción

Tabla 6.1 Propiedades de los Nudos de Caudal

Intensidad de la	Determina la calidad del agua que entra en la red por este punto. Pulsar el botón
Fuente	con puntos suspensivos (o presionar la tecla Intro) para abrir el Editor de Fuentes
	Contaminantes (ver apartado 6.5 más adelante).

PROPIEDAD	DESCRIPCION
ID Embalse	Etiqueta que identifica unívocamente a cada embalse. Puede contener hasta 15 caracteres numéricos o alfanuméricos. No puede coincidir con el ID de ningún otro nudo. Esta propiedad es obligatoria.
Coordenada X	Posición horizontal del embalse en el esquema, medida en las unidades del mismo. Si se deja en blanco, el embalse no será representado en el esquema.
Coordenada Y	Posición vertical del embalse en el esquema, medida en las unidades del mismo. Si se deja en blanco, el embalse no será representado en el esquema.
Descripción	Cadena de texto opcional que describe alguna información relevante del embalse.
Etiqueta	Cadena de texto opcional (sin espacios) utilizada para clasificar el embalse dentro de una categoría (p. ej. un piso de presión).
Altura Total	Altura piezométrica (cota + presión) del agua en el embalse, en metros (pies). Es una propiedad requerida.
Curva Modulac. de la Altura	Identificativo ID de la Curva de Modulación empleada para caracterizar la variación de la altura total en el tiempo. Dejar en blanco si no se aplica. Esta propiedad resulta útil cuando el embalse representa un punto de conexión a otra red, en el que la variación de la presión es conocida.
Calidad Inicial	Valor del parámetro de calidad del agua en el embalse. Puede dejarse en blanco si no se va a realizar un modelo de calidad o bien si el valor es cero.
Intensidad de la Fuente	Determina la calidad del agua que entra en la red por este punto. Pulsar el botón con puntos suspensivos (o presionar la tecla Intro) para abrir el <i>Editor de Fuentes Contaminantes</i> (ver apartado 6.5 más adelante).

Tabla 6.2Propiedades de los *Embalses*

Tabla 6.3 Propiedades de los Depósitos

PROPIEDAD	DESCRIPCION
ID Depósito	Etiqueta que identifica unívocamente a cada depósito. Puede contener hasta 15 caracteres numéricos o alfanuméricos. No puede coincidir con el ID de ningún otro nudo. Esta propiedad es obligatoria.
Coordenada X	Posición horizontal del depósito en el esquema, medida en las unidades del mismo. Si se deja en blanco, el depósito no será representado en el esquema.
Coordenada Y	Posición vertical del depósito en el esquema, medida en las unidades del mismo. Si se deja en blanco, el depósito no será representado en el esquema.
Descripción	Cadena de texto opcional que describe alguna información relevante del depósito.

Etiqueta	Cadena de texto opcional (sin espacios) utilizada para clasificar el depósito dentro de una categoría (p. ej. un piso de presión).
Cota de Solera	Cota en metros (pies) de la solera (fondo) del depósito respecto a un nivel de referencia común. Es una propiedad requerida.
Nivel Inicial	Nivel del agua en el depósito respecto a la solera, en metros (pies), al comienzo de la simulación. Es una propiedad requerida.
Nivel Mínimo	Nivel mínimo del agua respecto a la solera a mantener en el depósito, en metros (pies). Durante la simulación no se permitirá que el agua descienda por debajo de dicho nivel. Es una propiedad requerida.
Nivel Máximo	Nivel máximo del agua en el depósito respecto a la solera, en metros (pies). Durante la simulación no se permitirá que el agua supere dicho nivel. Es una propiedad requerida
Diámetro	Diámetro del depósito, en metros (pies). Para depósitos cilíndricos será el diámetro real. Para depósitos cuadrados o rectangulares, el diámetro equivalente es igual a 1,128 veces la raíz cuadrada de la sección transversal. Para depósitos aforados mediante una Curva de Cubicación, el valor de este parámetro es irrelevante. En cualquier caso, es una propiedad requerida.
Volumen Mínimo	Es el volumen de agua almacenado en el depósito cuando está a su nivel mínimo, expresado en metros cúbicos (pies cúbicos). Es una propiedad opcional para tener en cuenta el agua almacenada en el fondo del depósito a efectos del modelo de calidad, en el caso de no disponer de una Curva de Cubicación (ver más adelante). Suele coincidir con el denominado volumen de reserva.
Curva de Cubicación	Identificativo ID de la curva de cubicación que relaciona el volumen de agua almacenado con el nivel en el depósito. Si no se proporciona ningún valor se admite que el depósito es cilíndrico.
Modelo de Mezcla	 Identifica el modelo de mezcla aplicable en el depósito, a efectos del modelo de calidad. Puede ser: Completa (mezcla homogénea), 2Compart. (mezcla en dos compartimentos), Pistón FIFO (flujo en pistón – el primer volumen que entra es el primero que sale), Pistón LIFO (flujo en pistón – el último volumen que entra es el primero que sale).
	Para más información, ver el epígrafe <i>Modelos de Mezcla en los Depósitos</i> del apartado 3.4
Fracción de Mezcla	Fracción del volumen total del depósito correspondiente al compartimento que engloba a las tuberías de entrada y salida, en un modelo de mezcla de dos compartimentos (2Compart). Se puede dejar en blanco para otros modelos de mezcla.
Coeficiente de Reacción	Coeficiente de reacción en el seno del agua del depósito, para las sustancias reactivas, expresado en 1/día. El coeficiente será positivo para las reacciones en las que la cantidad de sustancia crece con el tiempo, y negativo en las que decrece. Si se deja en blanco se aplicará el coeficiente de reacción global en el medio, declarado para todo el proyecto en el diálogo <i>Opciones de Reacciones</i> . Para más información, ver el epígrafe <i>Reacciones que afectan a la Calidad del Agua</i> , del apartado 3.4.
Calidad Inicial	Valor del parámetro de calidad del agua en el nudo, al comienzo de la simulación. Puede dejarse en blanco si no se va a realizar un modelo de calidad o si el valor de la calidad inicial es cero.
Intensidad de la Fuente	Determina la calidad del agua que entra en la red por este punto. Pulsar el botón con puntos suspensivos (o presionar la tecla Intro) para abrir el <i>Editor de Fuentes Contaminantes</i> (ver apartado 6.5 más adelante).

PROPIEDAD	DESCRIPCIÓN
ID Tubería	Etiqueta que identifica unívocamente a cada tubería. Puede contener hasta 15 caracteres numéricos o alfanuméricos. No puede coincidir con el ID de ninguna otra línea. Esta propiedad es obligatoria.
Nudo Inicial	Identificativo ID del nudo en que comienza la tubería. Es una propiedad requerida.
Nudo Final	Identificativo ID del nudo en que termina la tubería. Es una propiedad requerida.
Descripción	Cadena de texto opcional que describe alguna información relevante de la tubería.
Etiqueta	Cadena de texto opcional (sin espacios) utilizada para clasificar la tubería dentro de una categoría (p. ej. por edad o por material).
Longitud	Longitud real de la tubería, en metros (pies). Es una propiedad requerida.
Diámetro	Diámetro de la tubería, en pulgadas (mm). Es una propiedad requerida.
Rugosidad	Coeficiente de rugosidad de la tubería. Es adimensional para la fórmula de Hazen-Williams o de Chezy-Manning, y tiene unidades de mm (milipiés) para la fórmula de Darcy-Weisbach. Es una propiedad requerida.
Coef. Pérd. Menores	Coeficiente de pérdidas menores adimensional asociado con los codos, singulari- dades, accesorios, etc. Si se deja en blanco se tomará como 0.
Estado Inicial	Especifica si la tubería se encuentra inicialmente Abierta , Cerrada o contiene una Válv. de Retención . En este último caso, la dirección permitida del flujo será del Nudo Inicial al Nudo Final.
Coef. Reacción en el Medio	Coeficiente de reacción en el medio para la tubería. Sus unidades son 1/día, para reacciones de primer orden. Un valor positivo indica crecimiento de la sustancia y un valor negativo decrecimiento. Si se deja en blanco, se aplicará el valor del Coef. Global de Reacción en el Medio declarado en el diálogo Opciones de Reacciones. Para más información, ver el epígrafe <i>Reacciones que afectan a la Calidad del Agua</i> , en el apartado 3.4
Coef. Reacción en la Pared	Coeficiente de reacción en la pared de la tubería. Sus unidades son masa/m ² /día (masa/ft ² /día) para reacciones de orden 0 y m/día (ft/día) para reacciones de orden 1. Un valor positivo indica crecimiento y un valor negativo decrecimiento. Si se deja en blanco, se aplicará el valor del Coef. Global de Reacción en la Pared declarado en el diálogo Opciones de Reacciones. Para más información, ver el epígrafe <i>Reacciones que afectan a la Calidad del Agua</i> , en el apartado 3.4

Tabla 6.4 Propiedades de las Tuberías

- **Nota**: Las longitudes de las tuberías pueden calcularse automáticamente a medida que son añadidas al esquema o se modifica su trazado, si la propiedad **Long-Auto** se encuentra activada. Para cambiar el estado activado/desactivado de esta propiedad, proceder de una de las siguientes maneras:
 - Seleccionar Proyecto >> Valores por Defecto... y editar el campo Longitud Automática de la página de *Propiedades* del diálogo de *Valores por Defecto*.
 - Pulsar con el botón derecho del ratón sobre la sección Long-Auto de la Barra de Estado y a continuación pulsar sobre la única opción del menú emergente.

Antes de utilizar la propiedad de Long-Auto asegurarse que las coordenadas del esquema se encuentran en la escala apropiada (ver Apartado 7.2).

PROPIEDAD	DESCRIPCIÓN
ID Bomba	Etiqueta que identifica unívocamente a cada bomba. Puede contener hasta 15 caracteres numéricos o alfanuméricos. No puede coincidir con el ID de ninguna otra línea. Esta propiedad es obligatoria.
Nudo Aspiración	Identificativo ID del nudo en el lado de aspiración de la bomba. Es una propiedad requerida.
Nudo Impulsión	Identificativo ID del nudo en el lado de descarga de la bomba. Es una propiedad requerida
Descripción	Cadena de texto opcional que describe alguna información relevante de la bomba.
Etiqueta	Cadena de texto opcional (sin espacios) utilizada para clasificar la bomba dentro de una categoría (p. ej. por edad, tamaño o localización)
Curva Característica	Identificativo ID de la Curva Característica que relaciona la altura proporcionada por la bomba con el caudal de paso, a la velocidad nominal de giro. Si la bomba va a trabajar a potencia constante (ver campo siguiente), dejar este campo en blanco.
Potencia Nominal	Potencia suministrada por la bomba, en kW (caballos). Utilizar esta opción cuando no se disponga de la curva característica de la bomba. EPANET supone que en este caso la bomba trabaja a potencia constante, independientemente del caudal de paso. Dejar en blanco si se especifica una curva característica en su lugar.
Velocidad Relativa	Velocidad relativa fijada para la bomba (adimensional). Por ejemplo, una velocidad relativa de 1,2 significa que la velocidad de rotación de la bomba es un 20 % mayor que su velocidad nominal.
Curva Modulac. Velocidad	Identificativo ID de la Curva de Modulación empleada para controlar el modo de operación de la bomba. Los coeficientes de la curva se interpretan como valores de la velocidad relativa. Un coeficiente 0 indica que la bomba está parada durante el intervalo de tiempo correspondiente. Dejar en blanco si no se aplica.
Estado Inicial	Estado de la bomba (Marcha o Parada) al comienzo de la simulación .
Curva Rendimiento	Identificativo ID de la Curva de Rendimiento de la bomba, que especifica su rendimiento (en tanto por cien) en función del caudal de paso. Esta información se utiliza únicamente para calcular el consumo de energía. Dejar en blanco si no se aplica o si se va a utilizar el rendimiento global especificado en la sección Opciones de Energía para todo el proyecto (ver Apartado 8.1).
Precio Energía	Precio medio o valor nominal de la energía, por kWh. Se utiliza únicamente para calcular el coste del consumo energético. Dejar en blanco si no se aplica o si se va a utilizar el precio global especificado en la sección Opciones de Energía para todo el proyecto (ver Apartado 8.1).
Curva Modulac. Precios	Identificativo ID de la curva de modulación que describe la variación del precio de la energía a lo largo del día. Cada coeficiente de la curva representa el factor a aplicar sobre el Precio nominal de la Energía (ver campo anterior) para obtener el precio real de la energía en cada periodo. Dejar en blanco si no se aplica o si se va a utilizar la curva global especificada en la sección Opciones de Energía para todo el proyecto (ver Apartado 8.1).

Tabla 6.5 Propiedades de las Bombas

PROPIEDAD	DESCRIPCIÓN		
ID Válvula	Etiqueta que identifica unívocamente a cada válvula. Puede contener hasta 15 caracteres numéricos o alfanuméricos. No puede coincidir con el ID de ninguna otra línea. Esta propiedad es obligatoria		
Nudo Aguas Arriba	Identificativo ID del nudo aguas arriba de la válvula, por el cual entra el flujo (las Válvulas Reductoras de presión y las Sostenedoras permiten el flujo en una sola dirección).Es una propiedad requerida.		
Nudo Aguas Abajo	Identificativo ID del nudo aguas abajo de la válvula, por el cual sale el flujo. Es una propiedad requerida		
Descripción	Cadena de texto opcional que o válvula.	Cadena de texto opcional que describe alguna información relevante de la válvula.	
Etiqueta	Cadena de texto opcional (sin espacios), utilizada para clasificar la válvula dentro de una categoría (p. ej. por tipo o por localización).		
Diámetro	Diámetro de la válvula, en mm (pulgadas). Es una propiedad requerida.		
Tipo Válvula	Identificativo del tipo de válvula (Reductora, Sostenedora, Rotura de Carga, Limitadora de Caudal, Regulación, ó Propósito General). Ver el epígrafe <i>Válvulas</i> en el Apartado 3.1 para una descripción de los distintos tipos de válvulas. Es una propiedad requerida.		
Consigna	Es un parámetro requerido que indica las condiciones de operación de la válvula.		
	<u>Tipo de Válvula</u> Reductora Sostenedora Rotura Carga Limit. Caudal Regulación Propós. Gral	<u>Consigna</u> Presión (m ó psi) Presión (m ó psi) Caída de Presión (m ó psi) Caudal (unidades de caudal) Coef. Pérdidas (sin unidades) Identificativo ID de la curva de pérdidas	
Coef. Pérdidas	Coeficiente adimensional de p completamente abierta. Si se d	érdidas menores, cuando la válvula está leja en blanco se tomará como 0.	
Estado Forzado	Estado forzado de la válvula al comienzo de la simulación. Si se especifica Abierta ó Cerrada , la consigna establecida para la válvula será ignorada y la válvula se comportará como una línea abierta o cerrada, según el caso. Si se especifica Ninguno , entonces el estado de la válvula vendrá determinado por la propia simulación. El estado forzado de una válvula y su consigna pueden variarse a lo largo de una simulación mediante el uso de Leyes de Control. Si el estado forzado de una válvula es Abierta o Cerrada, puede activarse de nuevo utilizando una ley de control para asignarle una nueva consigna.		

Tabla 6.6 Propiedades de las Válvulas

4

PROPIEDAD	DESCRIPCIÓN
Texto	El texto del rótulo.
Coordenada X	Posición horizontal de la esquina superior izquierda del rótulo en el esquema, medida en las unidades del mismo. Es una propiedad requerida.
Coordenada Y	Posición vertical de la esquina superior izquierda del rótulo en el esquema, medida en las unidades del mismo. Es una propiedad requerida.
Nudo de Anclaje	Identificativo ID del nudo que sirve de anclaje del rótulo (ver Nota 1 más abajo). Dejar en blanco si no se quiere anclar el rótulo.
Tipo de Objeto	Tipo de objeto cuya magnitud asociada se desea ver en el rótulo (ver Nota 2 más abajo). Las opciones son Ninguno , un Nudo o una Línea .
ID Elemento	Identificativo ID del elemento (Nudo o Línea) cuya magnitud asociada se desea ver en el rótulo.
Fuente	Abre un diálogo sobre el cual se puede seleccionar el tipo de fuente, tamaño y estilo para el rótulo.

Tabla 6.7 Propiedades de los Rótulos

Notas:

- 1. La posibilidad de anclar un rótulo a un nudo o línea del esquema se utiliza para mantener el rótulo siempre próximo a dicho elemento. Así, cuando acercamos o alejamos el esquema, el rótulo estará siempre a la misma distancia del elemento (en píxeles) que cuando se dibujó inicialmente. Esta propiedad evita que los rótulos se alejen demasiado de los elementos a que hacen referencia, cuando nos acercamos excesivamente a los mismos.
- 2. Las propiedades **Tipo de Objeto** e *ID Elemento*, determinan si el rótulo va a utilizarse para visualizar, además del texto, el valor de una magnitud asociada. En tal caso se visualizará, a continuación del texto, el valor actual de la magnitud seleccionada en el Visor del Esquema, para el elemento ID indicado. El Tipo de Objeto y su ID deben corresponderse con algún nudo o elemento válido del esquema. En otro caso se mostrará únicamente el texto del rótulo.

6.5 Edición de los Objetos No Visibles

Las *Curvas de Comportamiento*, las *Curvas de Modulación* y las *Leyes de Control* poseen editores especiales para definir sus propiedades. Para editar uno de estos "objetos", seleccionarlo en el Visor de Datos y pulsar el botón *Editar*

Además, el Editor de Propiedades para los Nudos de Caudal contiene un botón con puntos suspensivos, en el campo correspondiente a *Tipos de Demanda*, que al ser pulsado abre el *Editor de Demandas*. Análogamente, el campo *Intensidad de la Fuente* del Editor de Propiedades para los Nudos de Caudal, Embalses y Depósitos contiene un botón equivalente que abre el *Editor de Fuentes Contaminantes*. A continuación se describen cada uno de estos editores especiales.

El Editor de Curvas de Comportamiento

El *Editor de Curvas de Comportamiento* es un diálogo como el mostrado en la figura 6.1. Para utilizar este Editor deben rellenarse los siguientes campos:

Campo	Descripción
ID Curva Comport.	Identificativo ID de la curva (un máximo de 15 caracteres numéricos o alfanuméricos)
Descripción	Texto opcional indicativo de lo que representa la curva
Tipo de Curva	Tipo de curva
Datos X-Y	Datos X-Y de los diferentes puntos de la curva

Cuando nos desplazamos de una celda a otra de la *Tabla de Datos* (o bien al pulsar la tecla Intro) los datos introducidos son verificados y la curva se redibuja instantáneamente en la ventana contigua. En el caso de introducir uno o tres puntos para caracterizar la curva de la bomba, ésta se ajustará automáticamente a una curva analítica, cuya ecuación es mostrada en el recuadro *Ecuación*. Pulsar el botón **Aceptar** para consolidar la curva o el botón **Cancelar** para rechazarla. También se puede cargar una curva actual en un fichero con el botón **Gargar**, o almacenar la curva actual en un fichero con el botón **Guardar**.

Figura 6.1 Editor de Curvas de Comportamiento

El Editor de Curvas de Modulación

El *Editor de Curvas de Modulación* mostrado en la Figura 6.2, permite editar las propiedades de una curva constituida por factores de modulación en el tiempo, aplicables sobre una magnitud base. Para utilizar este Editor deben rellenarse los siguientes campos:

Campo	Descripción
ID Curva Modulac.	Identificativo ID de la curva de modulación (un máximo de 15 caracteres numéricos o alfanuméricos)
Descripción	Texto opcional indicativo de lo que representa la curva
Multiplicador	Factor multiplicador aplicable en cada periodo de tiempo de la curva de modulación.

El intervalo de tiempo utilizado para la modulación, se define en las *Opciones de Tiempo*. Su valor actual se muestra al pie de la gráfica. A medida que se van introduciendo nuevos multiplicadores, la curva de modulación es redibujada automáticamente para mostrar su aspecto. Para añadir más períodos de tiempo de los mostrados, pulsar la tecla **Intro** cuando el cursor se encuentre en la última celda del editor. Cuando se termine la edición, pulsar el botón **Aceptar** para consolidar la curva o el botón **Cancelar** para rechazarla. También se puede cargar una curva de modulación previamente almacenada en un fichero con el botón **Cargar**, o almacenar la curva de modulación actual en un fichero con el botón **Guardar**.

Figura 6.2 Editor de Curvas de Modulación

El Editor de Leyes de Control

El *Editor de Leyes de Control*, mostrado en la Figura 6.3, es una ventana con un editor de texto, utilizado para editar tanto las *Leyes de Control Simples* como las *Leyes basadas en Reglas*. Incorpora un menú contextual estándar para la edición del texto, que se activa pulsando con el botón derecho del ratón en cualquier punto de la ventana. El menú contiene comandos para *Deshacer, Cortar, Copiar, Pegar, Eliminar y Seleccionar Todo*.

🏶 Editor de Leyes de Control Simples 🛛 🗙			
LINK 9 OPEN IF LINK 9 CLOSED I	NODE 2 BELOW 34 F NODE 2 ABOVE 43		<u></u>
	Deshacer		
	Cortar Copiar		
	Pegar Eliminar		
	Seleccionar todo		T
•			Þ
	Aceptar	Cancelar	<u>A</u> yuda
Pulsar el botón de Ayu	da para revisar los format	os de las Leyes d	le Control

Figura 6.3 Editor de Leyes de Control

El Editor de Demandas

El *Editor de Demandas* es mostrado en la Figura 6.4. Se utiliza para asignar las demandas base y sus curvas de modulación, cuando existe más de un tipo de demanda en un nudo. Este editor es llamado desde el *Editor de Propiedades*, pulsando sobre el botón con puntos suspensivos que aparece cuando el foco se sitúa en el campo correspondiente a *Tipos de Demanda* (o pulsando la tecla **Intro**).

El editor es una tabla que contiene tres columnas. Cada tipo de demanda es introducida en una fila nueva de la tabla. Las columnas contienen la siguiente información:

- *Demanda Base*: demanda base o demanda media para cada tipo de demanda (requerido)
- *Curva Modulac*.: Identificativo ID de la curva de modulación aplicable para caracterizar la variación de la demanda en el tiempo (opcional)
- *Tipo Demanda*: texto utilizado para identificar el tipo de demanda (opcional)

	Demanda Base	Curva Modulac.	Tipo Demanda
1	13	1	Doméstica
2	3	2	Industrial
3			
4			
5			
6			

Figura 6.4 Editor de Demandas

La tabla se dimensiona inicialmente a 10 filas. Si se requieren filas adicionales, basta seleccionar cualquier celda de la última fila y pulsar **Intro**.

Nota: Por convención, la demanda situada en la primera fila del editor será considerada la demanda principal del nudo, y aparecerá en el campo *Demanda Base* del Editor de Propiedades.

El Editor de Fuentes Contaminantes

El *Editor de Fuentes Contaminantes* es un diálogo emergente utilizado para describir la calidad del flujo introducido en la red por un nudo determinado. Por fuente contaminante se entiende la salida de una Planta de Tratamiento de Agua Potable (ETAP), una estación de cloración a la salida de una perforación, un depósito intermedio de recloración o la intrusión no deseada de un contaminante en la red. El Editor de Fuentes Contaminantes mostrado en la Figura 6.5 contiene los siguientes campos:

Editor de Fuente Contaminante en el	Nudo 9 🔀
Intensidad Fuente 1,2	Aceptar
Curva Modulación 3	Cancelar
Tipo de Fuente • Concentración	Ayuda
Caudal Másico	
O Reinyección a Punto Fijo	
O Reinyección Incremental	

Figure 6.5 Editor de Fuentes Contaminantes

Campo	Descripción
Tipo de Fuente	Seleccionar entre: - Concentración - Caudal másico - Reinyección a Punto Fijo - Reinyección Incremental
Intensidad Fuente	Valor base (concentración media o caudal másico medio) de la fuente - dejar en blanco para anular la fuente
Curva Modulación	Identificativo ID de la curva de modulación que describe la variación de la intensidad de la fuente con el tiempo - dejar en blanco si no se aplica

Una fuente contaminante puede ser considerada como un punto en el cual la concentración varía de acuerdo una cierta curva de modulación, o bien un punto en el que la concentración es fijada conforme a una cierta consigna (punto de reinyección).

- Una fuente de **Concentración** fija el valor de la concentración de la sustancia para cualquier flujo externo que entra en la red, como por ejemplo el caudal procedente de un depósito o el caudal inyectado en un nudo (demanda negativa).
- Una fuente de **Caudal Másico** añade un caudal másico determinado de una sustancia al caudal que llega al nudo desde otros nudos de la red. (el caudal másico se expresa en masa de contaminante por unidad de tiempo)
- Una fuente de **Reinyección a Punto Fijo** fija en un cierto valor la concentración del flujo que sale del nudo (siempre que la concentración resultante al mezclar todos los flujos entrantes sea menor que la prefijada).
- Una fuente de **Reinyección Incremental** incrementa la concentración resultante de la mezcla de todos los caudales que llegan al nudo en un valor determinado.

Las fuentes en las cuales se fija la concentración del caudal entrante, bien directamente o como caudal másico, se utilizan preferentemente para caracterizar suministros de agua y plantas de tratamiento (p. ej. depósitos o nudos con un caudal asignado negativo). Las fuentes clasificadas como de reinyección o "refuerzo", se utilizan para caracterizar la inyección directa de trazadores, la adición de desinfectante en determinados puntos de la red, o la intrusión de un contaminante en la misma.

6.6 Copiar y Pegar Objetos

Las propiedades de cualquier objeto que forma parte del Esquema de la Red pueden copiarse y pegarse sobre cualquier otro objeto de la misma categoría. Para *Copiar* las propiedades de cualquier objeto al portapapeles de EPANET:

- 1. Pulsar con el botón derecho del ratón sobre el objeto seleccionado.
- 2. Seleccionar la opción Copiar del menú emergente mostrado.

Para Pegar las propiedades copiadas con anterioridad en otro objeto:

- 1. Pulsar con el botón derecho del ratón sobre el objeto seleccionado.
- 2. Seleccionar la opción Pegar del menú emergente mostrado.

6.7 Trazado y Orientación de las Líneas

Las líneas pueden dibujarse como polilíneas compuestas de cualquier número de segmentos rectilíneos, lo que permite cambiar su dirección o curvar su trazado. Una vez una línea ha sido dibujada en el esquema, se puede aún añadir, borrar o desplazar los vértices que configuran su trazado (ver Figura 6.6). Para editar los *Vértices* (o puntos interiores) de una línea:

1. Seleccionar la línea a editar sobre el Esquema de la Red y pulsar el

botón be la Barra de Herramientas del Esquema (o bien seleccionar Edición >> Seleccionar Vértice de la Barra de Menús, o pulsar con el botón derecho del ratón la línea y seleccionar la opción Vértices del menú emergente).

- 2. El puntero del ratón cambiará su forma por una flecha puntiaguda, y al mismo tiempo se mostrarán todos los vértices de la línea rodeados por un pequeño recuadro. Para seleccionar un vértice en particular, pulsar con el ratón sobre él.
- 3. Para añadir un nuevo vértice a la línea, pulsar el punto deseado de la línea con el botón derecho del ratón y seleccionar la opción Añadir Vértice del menú emergente (o pulsar la tecla Insertar).
- 4. Para borrar el vértice actualmente seleccionado, pulsar sobre él con el botón derecho del ratón y seleccionar la opción **Borrar Vértice** del menú emergente (o simplemente pulsar la tecla **Supr**).
- **5.** Para mover un vértice a otra posición, arrastrarlo hasta la nueva posición, manteniendo el botón izquierdo del ratón pulsado.
- 6. Estando aún en el modo Selección de Vértices se pueden editar los vértices de otra línea pulsando sobre ella con el ratón. Para abandonar el modo *Selección de Vértices*, pulsar con el botón derecho del ratón en cualquier punto del área del esquema y seleccionar la opción **Terminar la Edición** del menú emergente mostrado, o bien seleccionar otro botón de la Barra de Herramientas del Esquema.

Figura 6.6 Modificación del *Trazad*o de una Línea

Se puede también invertir la dirección de una línea (esto es, permutar sus nudos extremos) pulsando sobre ella con el botón derecho del ratón y seleccionando la opción **Invertir** del menú emergente. Esto es útil para orientar adecuadamente bombas y válvulas direccionales que se añadieron inicialmente al esquema en una dirección equivocada.

6.8 Borrar un Objeto

Para Borrar un objeto:

- 1. Seleccionar el objeto sobre el esquema o en el Visor de Datos.
- 2. Proceder de alguna de las siguiente maneras:
 - pulsar el botón 🔀 de la Barra de Herramientas Estándar,
 - pulsar el mismo botón de la página de Datos del Visor,
 - pulsar la tecla **Supr** del teclado.
- **Nota**: Se puede hacer que todas las operaciones de borrado sean confirmadas antes de ejecutarse. Ver la página de *Preferencias Generales* del diálogo de Preferencias del Programa, descrita en el Apartado 4.9.

6.9 Mover un Objeto

Para mover un nudo o un rótulo del esquema a otra posición:

- 1. Seleccionar el nudo o el rótulo.
- **2.** Pulsar de nuevo sobre el objeto y, manteniendo el botón izquierdo del ratón pulsado, arrastrarlo a la nueva posición.
- 3. Liberar el botón izquierdo del ratón.

Como alternativa, se pueden introducir las nuevas coordenadas X e Y del objeto en el Editor de Propiedades. Cuando un nudo se desplaza, todas las líneas conectadas a él se desplazan igualmente.

6.10 Seleccionar un Grupo de Objetos

Para seleccionar un grupo de objetos situados dentro de una región irregular del esquema de la red:

- Seleccionar Edición >> Seleccionar Región de la Barra de Menús o pulsar el botón de la Barra de Herramientas del Esquema.
- Dibujar un cercado poligonal para delimitar la región de interés del esquema, pulsando con el botón izquierdo del ratón para marcar los sucesivos vértices del polígono.
- 3. Cerrar el polígono pulsando el botón derecho del ratón o la tecla **Intro**. Se puede cancelar la selección pulsando la tecla **Esc**.

Para seleccionar todos los objetos contenidos en la vista actual del esquema de la red, seleccionar **Edición >> Seleccionar Todo** (Los objetos que quedan fuera del alcance de la vista actual no serán seleccionados).

Una vez que un grupo de objetos ha sido seleccionado, se pueden editar sus propiedades comunes (ver el apartado siguiente) o borrar todos los objetos

seleccionados del esquema. Para esto último, pulsar el botón 🖄 o pulsar la tecla Supr .

6.11 Editar un Grupo de Objetos

Para editar una propiedad de un grupo de objetos:

- **1.** Seleccionar la región del esquema que contiene el grupo de objetos a editar, siguiendo el proceso descrito anteriormente.
- 2. Seleccionar Edición >> Editar Grupo de la Barra de Menús.
- 3. Definir lo que se quiere editar en el diálogo de *Edición de un Grupo de Objeto*, mostrado en la Figura 6.7.

Edición de un Grupo	de Objetos			×
Para todas las	Tuberías	•	dentro de la reg	gión señalada
🔽 con	Etiqueta	•	lgual a 💌	Fundición
Sustituir 💌	*Rugosidad	•	por	0,30
-	ļ	Aceptar	Cancelar	Ayuda

Figura 6.7 Diálogo para la Edición de un Grupo de Objetos

El diálogo para la *Edición de un Grupo de Objetos* se utiliza para modificar las propiedades de un grupo seleccionado de objetos. Para utilizar este diálogo:

- Seleccionar una categoría de objetos a editar (Nudos de Caudal o Tuberías).
- 2. Validar la casilla "con" si se desea añadir un filtro para limitar los objetos seleccionados para su edición. Seleccionar en tal caso una propiedad, una relación y un valor para configurar el filtro. Un ejemplo podría ser "con Diámetro menor que 300".
- 3. Seleccionar el tipo de cambio a realizar *Sustituir*, *Multiplicar* o *Incrementar*.
- 4. Seleccionar la propiedad a cambiar.
- **5.** Introducir el valor que debe reemplazar, multiplicar o añadirse al valor actual.
- 6. Pulsar Aceptar para llevar a cabo la edición.

EPANET trabaja básicamente sobre un Esquema de la red a modelar. En este capítulo vamos a ver de qué modo se puede manipular el esquema y cómo mejorar la forma de visualizarlo.

7.1 Seleccionar el Modo de Presentar el Esquema

Desde la página del Esquema del Visor (Apartado 4.7) se seleccionan los parámetros de nudos y líneas a visualizar en el esquema. Estos se visualizan mediante un código de colores, cada uno de los cuales representa un rango de valores, tal como queda reflejado en las Leyendas del Esquema (ver más adelante).

Los parámetros asociados a los Nudos que pueden visualizarse son:

- Cota
- Demanda Base (valor nominal o demanda media)
- Calidad Inicial (calidad del agua al comienzo de la simulación)
- *Demanda Real (demanda total en el instante actual)
- *Altura Piezométrica (cota más altura de presión)
- *Presión
- *Calidad del Agua

Los parámetros asociados a las Líneas que pueden visualizarse son:

- Longitud
- Diámetro
- Coeficiente de Rugosidad
- Coeficiente de Reacción en el Medio
- Coeficiente de Reacción en la Pared
- *Caudal
- *Velocidad
- *Pérdida de Carga (por cada 1000 pies (metros) de tubería)
- *Factor de Fricción (según aparece en la fórmula de pérdidas de Darcy-Weisbach)
- *Velocidad de Reacción (promediada a lo largo de la tubería)
- *Calidad del Agua (promediada a lo largo de la tubería)

Los parámetros marcados con un asterisco son valores calculados, los cuales estarán disponibles sólo si se ha realizado previamente una simulación con éxito (ver Capítulo 8 – Ejecución de la Simulación).

7.2 Establecer las Dimensiones del Área de Dibujo

Las dimensiones físicas del área de dibujo deben definirse de forma que las coordenadas de todos los puntos del esquema puedan mostrarse debidamente en la pantalla del ordenador. Para fijar las dimensiones del área de dibujo:

- 1. Seleccionar Ver >> Dimensiones... en el Menú Principal.
- 2. Introducir las nuevas dimensiones en el diálogo *Dimensiones del Área de Dibujo* mostrado (ver Figura 7.1) o pulsar el botón **Ajuste Automático** para que EPANET calcule automáticamente las dimensiones a partir de las coordenadas de todos los objetos que incorpora la red.
- 3. Seleccionar las unidades de distancia a que están referidas las coordenadas introducidas
- 4. Pulsar el botón Aceptar para redimensionar el esquema.

Dimensiones del Área de Dibujo	×
Vértice Inferior Izquierdo	Vértice Superior Derecho
Coordenada X 7,00	Coordenada X 73,00
Coordenada Y 6,00	Coordenada Y 94,00
Unidades del Esquema	
C Pies C Metros	🔿 Grados 💿 Ninguna
Ajuste Automático Acej	ptar Cancelar Ayuda

Figura 7.1 Diálogo para fijar las Dimensiones del Área de Dibujo

La información configurable desde el diálogo de Dimensiones del Área de Dibujo es la siguiente:

Campo	Descripción
Vértice Inferior Izquierdo	Coordenadas X e Y del vértice inferior izquierdo del área de dibujo del esquema.
Vértice Superior Derecho	Coordenadas X e Y del vértice superior derecho del área de dibujo del esquema
Unidades del Esquema	Unidades utilizadas para medir las distancias sobre el mapa. Se puede elegir entre Pies, Metros, Grados o Ninguna (p. ej. unidades arbitrarias).
Ajuste Automático	Calcula las dimensiones automáticamente a partir de las coordenadas de todos los objetos que forman la red

Nota: Si se va a utilizar un Mapa de Fondo, juntamente con la opción de Calcular Automáticamente la Longitud de las Tuberías, se recomienda fijar las coordenadas del área de dibujo inmediatamente después de crear un nuevo proyecto, ya que las unidades de medida de las distancias podrían diferir de las empleadas para medir la longitud de las tuberías. Estas últimas (metros o pies) dependen de que las unidades elegidas para medir el caudal sean métricas ó US. EPANET convierte automáticamente las unidades si fuese necesario.

7.3 Utilización de un Mapa de Fondo

EPANET puede mostrar un *Mapa de Fondo* superpuesto detrás del esquema de la red. El dibujo de fondo puede contener un mapa de calles o de otros servicios públicos, un mapa cartográfico, un plan de ordenación urbana, o cualquier otro dibujo o imagen que resulte útil. Por ejemplo, disponiendo en el fondo un mapa de calles se puede facilitar el proceso de añadir tuberías a la red, al permitir la digitalización directa de su trazado con referencia al fondo.

El dibujo de fondo debe ser un fichero meta-fichero mejorado de Windows o un fichero bitmap, creado en cualquier caso fuera del entorno de EPANET. Una vez importado, sus características no pueden ser editadas, aunque su parte visible variará conforme nos acerquemos, alejemos o desplacemos sobre el esquema de la red. Los meta-ficheros (vectoriales) se comportan mejor que los ficheros bitmaps (mapa de bits), ya que los primeros no pierden resolución al ser re-escalados. La mayoría de programas de CAD y GIS ofrecen la posibilidad de guardar los ficheros de dibujo y mapas como meta-ficheros (metafiles).

Si se selecciona la opción Ver >> Mapa de Fondo de la Barra de Menús, se mostrará un submenú con los siguientes comandos:

- **Cargar...** (carga un mapa de fondo en el proyecto)
- **Descargar** (descarga el mapa de fondo del proyecto)
- Alinear (alinea las tuberías de la red con el mapa de fondo)
- Mostrar/Ocultar (muestra/oculta el mapa de fondo)

Cuando se carga por primera vez el mapa de fondo, la imagen se sitúa automáticamente haciendo coincidir su esquina superior izquierda con la del rectángulo que delimita el esquema de la red. El mapa de fondo puede reposicionarse con respecto al esquema de la red seleccionando la opción Ver >> Mapa de Fondo >> Alinear. Al seleccionarla, el esquema entero de la red, simplificado mediante trazos, podrá moverse libremente sobre el fondo (manteniendo el botón izquierdo del ratón pulsado) hasta hacerlo encajar con éste. Al guardar el proyecto, se guardará también el nombre del fichero del mapa de fondo y su alineación actual, junto con los restantes datos del mismo.

Para obtener buenos resultados cuando se superpone un mapa de fondo:

- Utilizar meta-ficheros, con preferencia a bitmaps.
- Dimensionar el esquema de la red de modo que el rectángulo que lo delimita tenga las mismas proporciones (razón ancho/alto) que el mapa de fondo.

7.4 Acercar o Alejar el Esquema

Para *Acercar* el esquema de la red:

- Seleccionar Ver >> Acercar en la Barra de Menús, o pulsar el botón de la Barra de Herramientas del Esquema.
- 2. Para acercar el esquema a una escala el doble de la actual (100%), situar el ratón en el centro del área a ampliar y pulsar el botón izquierdo del mismo.
- **3.** Para ampliar una zona determinada, situar el ratón en la esquina superior izquierda de dicha zona, y con el botón izquierdo pulsado, arrastrar el ratón hacia la esquina opuesta, hasta que el rectángulo dibujado abarque toda la zona deseada. Finalmente, soltar el botón del mismo.

Para Alejar el esquema de la red:

- Seleccionar Ver >> Alejar en la Barra de Menús, o pulsar el botón de la Barra de Herramientas del Esquema.
- 2. Situar el ratón en el punto del esquema que deseamos ocupe el centro de la pantalla, y pulsar el botón izquierdo del ratón.
- **3.** El esquema volverá a su escala anterior, centrado sobre el punto elegido.

Para obtener una *Vista Completa* del Esquema de la Red (100% de escala), seleccionar **Ver** >> **Encuadre** de la Barra de Menús, o pulsar el botón de la Barra de Herramientas del Esquema.

7.5 Desplazar el Esquema

Para *Desplazar* el esquema de la red a través de la ventana:

 Seleccionar Ver >> Desplazar en la Barra de Menús o pulsar el botón de la Barra de Herramientas del Esquema.

- 2. Pulsar con el botón izquierdo del ratón cualquier punto del área de dibujo y arrastrar el ratón en la dirección que se desee desplazar el esquema.
- 3. Liberar el botón del ratón para completar el desplazamiento.

Para Desplazar el esquema usando la *Vista General* (ver Apartado 7.8 más adelante):

- Si la ventana de la Vista General no estuviera visible, abrirla seleccionando la opción Ver >> Vista General en la Barra de Menús
- 2. Situar el puntero del ratón dentro de la ventana de visualización mostrada sobre la Vista General (remarcada en rojo).
- 3. Con el botón izquierdo del ratón pulsado, arrastrar la ventana de visualización a una nueva posición.
- 4. Al liberar el botón del ratón, el esquema de la red se desplazará automáticamente para mostrar en la ventana principal la nueva zona delimitada por la ventana de visualización en la Vista General.

7.6 Buscar un Objeto

Para Buscar un *Nudo* o una *Línea* sobre el esquema, cuyo identificativo ID es conocido:

- Seleccionar Ver >> Buscar en la Barra de Menús o pulsar el botón
 sobre la Barra de Herramientas Estándar.
- 2. En el diálogo del *Buscador sobre el Esquema*, seleccionar la opción **Nudo** o **Línea** e introducir el identificativo ID.
- 3. Pulsar el botón **Buscar**.

Si el nudo o línea existe, será resaltado sobre el esquema, y también en la ventana del Visor. Si el esquema de la red está ampliado, de modo que el nudo o línea buscado cae fuera de la zona visible, se desplazará automáticamente el esquema para hacerlo visible. En el diálogo del Buscador se listarán también los identificativos de todas las líneas que conectan con el nudo encontrado o bien los nudos extremos de la línea encontrada.

Para obtener una lista de todos los nudos que actúan como Fuentes Contaminantes:

- Seleccionar Ver >> Buscar en la Barra de Menús o pulsar el botón de la Barra de Herramientas Estándar.
- 2. En el diálogo del *Buscador sobre el Esquema*, seleccionar la opción **Fuente**.
- 3. Pulsar el botón **Buscar**.

Sobre el mismo diálogo del Buscador se mostrarán los identificativos ID de todos los nudos que tienen asociada una Fuente Contaminante. Pulsando ahora sobre cualquiera de los identificativos mostrados, éste se verá resaltado en el esquema.

7.7 Las Leyendas del Esquema

Se pueden mostrar hasta tres tipos de leyendas. Las *Leyendas de Nudos y Líneas* asocian un color con un rango de valores de la magnitud que está visualizándose sobre el esquema de la red. La *Leyenda Horaria* muestra la hora real correspondiente al instante de la simulación que está visualizándose. Para mostrar u ocultar cualquiera de estas leyendas, seleccionar la opción **Ver** >> **Leyendas** >> **Nudos/Líneas/Hora del Día** de la Barra de Menús, o bien pulsar en cualquier punto del área de dibujo con el botón derecho del ratón y seleccionar la opción correspondiente desde el menú emergente. También se puede ocultar una leyenda haciendo una doble pulsación sobre ella con el ratón.

Para mover una leyenda a otra posición:

- 1. Pulsar sobre la leyenda con el botón izquierdo del ratón.
- 2. Con el botón pulsado, arrastrar la leyenda a su nueva posición y soltar el botón.

Para editar la Leyenda de Nudos:

- Seleccionar la opción Ver >> Leyendas >> Modificar >> Nudos o bien pulsar sobre la leyenda con el botón derecho del ratón, si está visible.
- Sobre el diálogo del Editor de Leyendas mostrado (ver Figura 7.2), modificar los colores e intervalos de la leyenda.

Para editar la Leyenda de Líneas se procede de modo similar.

El *Editor de Leyendas* (Figura 7.2) se utiliza para fijar los rangos numéricos asignados a los diferentes colores con que se visualizará una determinada magnitud sobre el esquema de la red. Las opciones que ofrece son las siguientes:

- Para delimitar los rangos aplicables, introducir los valores de éstos en los recuadros correspondientes, llevando cuidad de que queden en orden creciente. No es necesario rellenar todos los recuadros.
- Para cambiar un color, pulsar sobre él en la banda de colores auxiliar y seleccionar un nuevo color sobre el *Diálogo de Colores* mostrado.
- Para dividir el rango total de variación de la magnitud seleccionada en el instante actual en cinco intervalos iguales, pulsar el botón **Intervalos Iguales**.
- Para dividir el rango total de variación de la magnitud seleccionada en el instante actual en cinco intervalos, de modo que el número de elementos que entren en cada intervalo sea el mismo, pulsar el botón **Percentiles Iguales**.
- El botón **Rampa de Colores** se utilizara para seleccionar los colores de una lista de gamas de color predeterminada.
- El botón **Invertir Colores** permite invertir el orden de los colores actualmente seleccionados (el color correspondiente al rango inferior pasa a corresponderse con el rango superior y a la inversa)
- Para mostrar la leyenda enmarcada en un recuadro, validar la opción Marco

Figure 7.2 Diálogo del Editor de Leyendas

7.8 Vista General del Esquema

La Vista General del Esquema permite saber dónde se sitúa la zona actualmente visible en la ventana del Esquema, con relación al área ocupada por la red en su conjunto. El área visible es remarcada sobre la Vista General mediante un recuadro en rojo. A medida que se arrastra el recuadro sobre la Vista, el contenido de la ventana del Esquema se irá actualizando. Análogamente, si desplazamos la red o modificamos el zoom sobre la ventana del Esquema de la Red, el recuadro de la Vista General se actualizará automáticamente. La Vista General puede visualizarse u ocultarse seleccionando la opción Ver >> Vista General de la Barra de Menús.

7.9 Opciones de Visualización del Esquema

Existen diversas formas de abrir el diálogo de *Opciones del Esquema* (ver figura 7.3), el cual se utiliza para modificar el modo en que el esquema de la red es visualizado:

- seleccionar Ver >> Opciones del Esquema, de la Barra de Menús, o bien
- pulsar el botón *Opciones* 🖆 de la Barra de Herramientas Estándar, cuando la ventana activa es la ventana del Esquema de la Red, o bien
- pulsar con el botón derecho del ratón en cualquier parte vacía del área de dibujo y seleccionar **Opciones del Esquema** del menú emergente mostrado.

El diálogo de *Opciones del Esquema* contiene en su lado izquierdo un selector de categorías, que da acceso a la página de opciones de cada categoría. Éstas son:

0	pciones del Esquema	×
	Nudos	Tamaño del Nudo
	Líneas	3
	Rótulos	Proporcional al Valor
	Etiquetas	I Mostrar el Borde
	S ímbolos	✓ Mostrar Nudos de Caudal
	Flechas	
	Fondo	
	Aceptar	Cancelar <u>Ayuda</u>

Figura 7.3 Diálogo de Opciones del Esquema

- *Nudos* (controlan el tamaño de los nudos y si éste desea hacerse proporcional al valor de la magnitud asociada)
- *Líneas* (controlan el grosor de las líneas y si éstas quieren hacerse proporcionales al valor de la magnitud asociada)
- *Rótulos* (activan o desactivan la visualización de los rótulos)
- *Etiquetas* (muestran u ocultan el identificativo ID y el valor de la magnitud asociada a los nudos y líneas)
- *Símbolos* (controlan la visualización o no de los símbolos que representan a depósitos, bombas y válvulas)
- *Flechas* (controlan la visibilidad y el estilo de las flechas que indican la dirección del caudal en las líneas)
- *Fondo* (cambian el color del fondo del esquema)

Opciones de Nudos

La página de *Nudos* del diálogo de *Opciones del Esquema* controla la forma en que se visualizarán los nudos sobre el Esquema de la Red.

Opción	Descripción
Tamaño del Nudo	Selecciona el diámetro del nudo
Proporcional al Valor	Especifica si se quiere aumentar el tamaño del nudo pro- porcionalmente al valor de la magnitud asociada al mismo
Mostrar el Borde	Indica si los nudos deben dibujarse rebordeados con una línea (recomendado si se emplea un fondo de color suave)
Mostrar Nudos de Caudal	Indica si los nudos de caudal deben visualizarse (todos los nudos serán ocultados si no se seleccione esta opción).

Opciones de Líneas

La página de *Líneas* del diálogo de *Opciones del Esquema* controla la forma de visualizar las líneas en el esquema.

Opción	Descripción
Grosor de Línea	Determina el grosor con que se representarán las líneas en el esquema
Proporcional al Valor	Especifica si se quiere aumentar el grosor de la línea pro- porcionalmente al valor de la magnitud asociada al mismo

Opciones de Rótulos

La página de *Rótulos* del diálogo de *Opciones del Esquema* controla la forma de visualizar los rótulos sobre el esquema.

Opción	Descripción
Mostrar Rótulos	Muestra los rótulos sobre el esquema (los rótulos serán ocultados a menos que se seleccione esta opción)
Usar Textos Transparentes	Muestra los rótulos con un fondo transparente (en otro caso se mostrarán sobre un fondo opaco)
Escala Mínima	Fija la escala mínima (en %) a partir de la cual deben visualizarse los rótulos; a escalas inferiores serán ocultados, a menos que se declaren como Visualizadores de Resultados.

Opciones de Etiquetas

La página de *Etiquetas* del diálogo de *Opciones del Esquema* determina qué tipo de etiquetas van a mostrarse junto a los nudos y líneas del esquema.

Opción	Descripción
Mostrar ID Nudos	Muestra los identificativos ID de los nudos
Mostrar Valores en Nudos	Muestra los valores de la magnitud actualmente asociada a los nudos
Mostrar ID Líneas	Muestra los identificativos ID de las líneas
Mostrar Valores en Líneas	Muestra los valores de la magnitud actualmente asociada a las líneas
Usar Textos Transparentes	Muestra las etiquetas con un fondo transparente (en otro caso se mostrarán sobre un fondo opaco)
Escala Mínima	Fija la escala mínima (en %) a partir de la cual deben visualizarse las etiquetas; a escalas inferiores todas las etiquetas serán ocultadas
Tamaño Fuente	Fija el tamaño de la fuente a emplear para todas las etiquetas visibles

Nota: Se pueden crear etiquetas con los valores de la magnitud actual, para determinados nudos y líneas seleccionados de la red, creando rótulos del tipo Nudo o Línea asociados a los mismos. Ver apartados 6.2 y 6.4, y en particular la Tabla 6.7.

Opciones de Símbolos

La página de *Símbolos* del diálogo de *Opciones del Esquema* determina qué tipo de objetos van a verse representados mediante símbolos en el esquema.

Opción	Descripción
Mostrar los Depósitos	Muestra los símbolos de los depósitos
Mostrar las Bombas	Muestra los símbolos de las bombas
Mostrar las Válvulas	Muestra los símbolos de las válvulas
Mostar los Emisores	Muestra los símbolos de los emisores
Mostar las Fuentes	Muestra el símbolo + para identificar a las fuentes contaminantes
Escala Mínima	Fija la escala mínima (en %) a partir de la cual deben visualizarse los símbolos; a escalas inferiores todos los símbolos serán ocultados

Opciones de Flechas

La página de *Flechas* del diálogo de *Opciones del Esquema* controla cómo se van a visualizar sobre el esquema las flechas indicativas de la dirección del flujo.

Opción	Descripción
Estilo de Flecha	Selecciona el estilo (forma) de las flechas a visualizar (seleccionar <i>Ninguno</i> para ocultarlas)
Tamaño de Flecha	Fija el tamaño de las flechas
Escala Mínima	Fija la escala mínima (en %) a partir de la cual deben visualizarse las flechas; a escalas inferiores todas las flechas serán ocultadas

Nota: Las flechas de dirección del flujo sólo podrán mostrarse después de haber realizado una simulación con éxito (ver Apartado 8.2 Ejecutar una Simulación).

Opciones de Fondo

La página de *Fondo* del diálogo de *Opciones del Esquema* ofrece una selección de posibles colores a aplicar como fondo del esquema.

Una vez se han definido adecuadamente todos los datos de partida de la red, ya se puede analizar su comportamiento hidráulico y la evolución de la calidad del agua. En este capítulo se describe cómo establecer las opciones de cálculo, cómo ejecutar una simulación, y cómo resolver los problemas que puedan presentarse durante el análisis.

8.1 Opciones de Cálculo

Existen cinco grupos de opciones para controlar el modo en que EPANET va a llevar a cabo los cálculos: *Hidráulicas, Calidad, Reacciones, Tiempos y Energías.* Para establecer cualquiera de estas opciones:

- Seleccionar la categoría *Opciones* en el Visor de Datos, o bien seleccionar **Proyecto** >> **Opciones de Cálculo...** de la Barra de Menús.
- 2. Seleccionar desde la ventana del Visor el grupo de opciones deseado: Hidráulicas, Calidad, Reacciones, Tiempos o Energías.
- 3. Si el Editor de Propiedades no estuviera aún visible, pulsar el botón

Editar de la ventana del Visor (o pulsar la tecla **Intro**).

4. Editar la opción deseada desde el Editor de Propiedades.

Una vez se está editando un grupo de opciones determinado desde el Editor de Propiedades, se puede cambiar al grupo anterior o siguiente simplemente pulsando las teclas **AvPág** o **RePág.** respectivamente.

Opciones Hidráulicas

Las *Opciones Hidráulicas* controlan el modo en que se van a llevar a cabo los cálculos hidráulicos. Estas son las siguientes:

Opción	Descripción
Unidades de Caudal	Unidades en las cuales serán expresados los caudales en los nudos y los caudales de paso por las líneas. Si se eligen litros o metros cúbicos, entonces las restantes magnitudes serán expresadas en unidades métricas. Si se eligen galones, pies cúbicos o pies·acres, entonces las restantes magnitudes se expresarán en unidades convencionales US. Hay que llevar cuidado al cambiar las unidades, porque ello puede afectar al resto de los datos del proyecto (ver Apéndice A, Unidades de Medida)
Fórmula de Pérdidas	 Formula utilizada para calcular las pérdidas de carga en función del caudal de paso por la tubería. Las opciones son: Hazen-Williams Darcy-Weisbach Chezy-Manning Debido a que cada fórmula contempla la rugosidad de la tuberías de forma diferente, el cambio de fórmula puede requerir la actualización de todos los coeficientes de rugosidad de las tuberías.

Peso Específico Relat.	Relación entre la densidad del fluido que circula por la red y la del agua a 4 ° C (sin unidades).
Viscosidad Relativa	Relación entre la viscosidad cinemática del fluido y la del agua a 20° C (1,0 centistokes o bien 0,94 pies ² /día) (sin unidades).
Máximo Iteraciones	Número máximo de iteraciones permitido para resolver las ecuaciones no lineales que gobiernan el sistema hidráulico, en cualquier instante de la simulación. Se sugiere el valor 40.
Precisión	Criterio de convergencia utilizado para saber que se ha encontrado una solución para el conjunto de ecuaciones no lineales que gobiernan el sistema. Las iteraciones finalizan cuando la suma de todas las variaciones de caudales dividida por la suma de todos los caudales circulantes es menor que este número. Se sugiere el valor 0,001.
Caso de No Equilibrio	Acción a aplicar si no se encuentra una solución en el número máximo de iteraciones permitido. Las opciones son Parar para detener la simulación en este punto, o Continuar para realizar 10 iteraciones más, durante las cuales no se permitirá el cambio de estado de las líneas, en un intento de obtener la convergencia.
Curva Modulac. por Defecto	Identificativo ID de la curva de modulación aplicable a las demandas, en aquellos nudos en que ésta no se haya especificado. Si no se declara una curva de modulación por defecto, la demanda permanecerá constante en dichos nudos.
Factor de Demanda	Factor global aplicable a todas las demandas en los nudos, con el fin de aumentar o disminuir el consumo total de la red. P. ej. un factor 2,0 duplicaría todas las demandas, un factor 0,5 las dividiría por la mitad, y un factor 1,0 las dejaría igual.
Exponente de los Emisores	Exponente al cual se elevará la presión, para calcular el caudal saliente por los emisores. El exponente recomendado en los manuales para toberas y rociadores es de 0,5. En el caso de representar una fuga puede ser distinto. Para más detalles, ver la discusión sobre Emisores en el Apartado 3.1.
Informe de Estado	 Especifica el volumen de información a incluir en el informe emitido tras finalizar una simulación. Las opciones son: No (no se emite ningún informe) Sí (informe normal – lista todos los cambios habidos en el estado de las líneas durante la simulación) Todo (informe completo – contiene lo mismo que el informe normal, más los errores de convergencia para cada iteración realizada, dentro de cada instante de la simulación) El informe completo se utiliza únicamente para depuración

Nota: Las distintas Opciones Hidráulicas pueden también establecerse desde la opción de menú **Proyecto >> Valores por defecto,** y guardarse para ser utilizadas en futuros proyectos (ver Apartado 5.2).

Opciones de Calidad

Las *Opciones de Calidad* controlan el tipo de análisis de calidad a efectuar y el modo en que el contaminante es transportado a lo largo de la red. Son las siguientes:

Opción	Descripción
Tipo Modelo Calidad	 Tipo de análisis de calidad a realizar. Las opciones son: Ninguno (no se realiza ningún análisis de calidad) Sust. Química (calcula la concentración de una sustancia química, reactiva o no) Proced. (realiza un seguimiento del porcentaje de agua procedente de un nudo dado, que llega a cada punto de la red) Tiempo Perm. (calcula el tiempo de permanencia del agua en la red)
	En lugar de la opción Sust. Química , se puede introducir el nombre real de la sustancia a observar (p. ej. Cloro).
Unidades de Masa	Unidades de masa empleadas para expresar la concentración de un contaminante. Las opciones son mg/l o µg/l. Las unidades empleadas para el cálculo de Procedencias son porcentajes y para los Tiempos de Permanencia horas, estando ambas fijadas.
Coef. Difusión Relativo	Valor del coef. de difusión molecular de la sustancia en estudio, referida al coef. de difusión del cloro a 20°C (0,00112 pies ² /día). Un valor 2 indica que la sustancia se difunde dos veces más rápido que el cloro, un valor 0,5 que se difunde a velocidad mitad, etc. Sólo se aplica al modelar la transferencia de masa en las reacciones con las paredes de las tuberías. Introducir un 0 si se van a ignorar los fenómenos de transferencia de masa.
Nudo de Procedencia	Identificativo ID del nudo del cual procede el flujo a seguir. Se aplica solamente en el análisis de procedencias.
Tolerancia Parámetro Calidad	El cambio más pequeño del parámetro de calidad analizado, que provocará la creación de un nuevo segmento en la tubería. Un valor típico es 0,01 para contaminantes cuya concentración se mide en mg/l, así como para el cálculo de tiempos de permanencia y procedencias.

Nota: La *Tolerancia del Parámetro de Calidad* determina cuándo la calidad de un segmento de tubería puede considerarse prácticamente igual a la de otro contiguo. En el estudio de la concentración de un contaminante, puede tomarse como el límite de sensibilidad del procedimiento utilizado para medir dicha concentración, corregido por un factor de seguridad conveniente. Si el valor se toma demasiado alto puede afectar al grado de precisión de los resultados, y si se toma demasiado bajo puede afectar al tiempo de cálculo. Se aconseja experimentar antes con diversos valores de este parámetro.

Opciones de Reacciones

Las *Opciones de Reacciones* establecen los modelos de reacción aplicables para analizar la evolución de la calidad del agua. Estas opciones son las siguientes:

Opción	Descripción
Orden Reacción en el Medio	Potencia a la cual hay que elevar la concentración para determinar la velocidad de reacción en el medio. Un valor 1 corresponde a una reacción de primer orden, un 2 a una reacción de segundo orden, etc. Utilizar cualquier valor negativo para una cinética de Michaelis-Menton. Si no se especifica un coeficiente de reacción en el medio a nivel global o de tubería, esta opción será ignorada.
Orden Reacción en la Pared	Potencia a la cual hay que elevar la concentración para determinar la velocidad de reacción en la pared. Las opciones son Uno (1) para reacciones de primer orden, o Cero (0) para velocidades de reacción constante. Si no se especifica un coeficiente de reacción en la pared a nivel global o de tubería, esta opción será ignorada.
Coef. Global Reacc. Medio	Coeficiente de velocidad de reacción en el medio (K_b) asignado por defecto a todas las tuberías. Este valor puede cambiarse para algunas tuberías, editándolo para ellas específicamente. Un valor positivo implica el crecimiento de la concentración, y un valor negativo su decrecimiento. Un valor 0 implica que no hay reacción. Las unidades serán las empleadas para expresar la concentración, elevadas a la potencia (1 - n), y divididas por días, donde n expresa el orden de la reacción en el medio.
Coef. Global Reacc. Pared	Coeficiente de velocidad de reacción en la pared (K_w) asignado por defecto a todas las tuberías. Este valor puede cambiarse para algunas tuberías, editándolo para ellas específicamente. Un valor positivo implica el crecimiento de la concentración, y un valor negativo su decrecimiento. Un valor 0 implica que no hay reacción. Las unidades serán m/día (SI) o pies/día (US) para reacciones de primer orden y masa/m ² /día (SI) o masa/pies ² /día (US) para reacciones de orden cero.
Concentración Límite	Concentración máxima que puede alcanzar una sustancia cuyo contenido crece con el tiempo, o concentración mínima si ésta decrece. Las velocidades de reacción en el medio serán proporciona- les a la diferencia entre la concentración actual y el valor límite. Para más detalle ver el epígrafe <i>Reacciones en el seno del agua</i> del Apartado 3.4. Introducir un 0 si no se aplica.
Coef. Correlación Pared	Factor que correlaciona el coeficiente de reacción en la pared con la rugosidad de la tubería. Para más detalles consultar el epígrafe <i>Reacciones en la Pared</i> del Apartado 3.4. Introducir un 0 si no se aplica.

Opciones de Tiempo

Las *Opciones de Tiempo* fijan los valores correspondientes a los diferentes intervalos de tiempo utilizados durante la simulación en período extendido (los tiempos pueden introducirse en horas decimales o en el formato horas:minutos:segundos). Estas opciones son:

Opción	Descripción
Duración Total	Duración total de la simulación, en horas. Un valor 0 significa un cálculo en régimen permanente (o para un instante dado)
Intervalo Cálculo Hidráulico	Intervalo de tiempo entre dos cálculos sucesivos del estado de equilibrio de la red. El valor por defecto es 1 hora
Intervalo Cálculo Calidad	Intervalo de tiempo utilizado para hacer avanzar la sustancia transportada en un modelo de calidad. El valor por defecto es 5 minutos (0:05 horas)
Intervalo Curvas Modulación	Intervalo de tiempo utilizado para caracterizar todas las curvas de modulación. El valor por defecto es 1 hora.
Hora Inicio Curvas Modulación	Hora común para todas las curvas de modulación, a partir de la cual se inicia la simulación (p. ej. un valor 2 significaría que la simulación arranca con el coeficiente de las curvas de modulación correspondiente a la hora 2). El valor por defecto es 0.
Intervalo Resultados	Intervalo de tiempo entre los instantes de cálculo para los cuales se mostrarán los resultados al usuario. El valor por defecto es 1 hora
Hora Inicio Resultados	Hora de la simulación a partir de la cual se comenzarán a mostrar los resultados al usuario. El valor por defecto es 0.
Hora Real Inicio Simulación	Hora real a la cual comienza la simulación (p. ej. 7:30 AM, 10:00 PM). El valor por defecto es 12:00 AM (medianoche).
Estadísticas	 Procedimiento estadístico empleado para sintetizar los resultados de una simulación en periodo extendido. Las opciones son: Ninguna (se muestran los resultados correspondientes a cada instante) Medias (se muestran los valores medios de los resultados) Mínimos (se muestra el valor mínimo de los resultados) Máximos (se muestra el valor máximo de los resultados) Rangos (se muestra la diferencia entre el valor máximo y el valor mínimo de los resultados) Las funciones estadísticas se aplican sobre los resultados de los rodos los nudos y líneas, entre la Hora de Inicio de los
	todos los nudos y líneas, entre la Hora de Inicio de los Resultados y la hora final de la simulación.

Nota: Para realizar un análisis en régimen permanente (o para un instante dado) poner como valor de la *Duración Total* 0 horas. En este caso, las demás Opciones de Tiempo serán ignoradas, a excepción de la *Hora Real de Inicio de la Simulación*. Los análisis de calidad del agua requieren siempre que el tiempo de simulación sea distinto de 0.

Opciones de Energía

Las *Opciones de Energía* proporcionan los valores por defecto a utilizar para el cálculo de la energía de bombeo y su coste, cuando no se asignan parámetros específicos a una bomba dada. Estas son las siguientes:

Opción	Descripción
Rendimiento Bombas (%)	Rendimiento de la bomba por defecto.
Precio Energía (por kWh)	Precio de la energía por kWh. Las unidades monetarias no se indican explícitamente.
Curva Modulación Precios	Identificativo ID de la curva de modulación utilizada para representar las variaciones del precio de la energía con el tiempo. Dejar en blanco si no se aplica.
Recargo por Potencia Máxima	Coste de utilización de la potencia, por Kw (corresponde al coste del término de potencia, el cual se evalúa en función de la potencia máxima demandada) ¹² .

8.2 Ejecutar una Simulación

Para *Ejecutar una Simulación* hidráulica, y en su caso, también de la calidad del agua, hay que proceder del siguiente modo:

- Seleccionar Proyecto >> Calcular de la Barra de Menús o pulsar el botón de la Barra de Herramientas Estándar.
- 2. Mientras se realizan los cálculos se verá cómo éstos progresan en la ventana de *Estado de la Simulación*.
- 3. Pulsar Aceptar cuando se terminen los cálculos.

Si el cálculo termina con éxito, aparecerá el icono en la sección *Estado de la Simulación* de la Barra de Estado, situada al pie del área de trabajo de EPANET. Cualquier error o mensaje de advertencia se mostrará en una ventana emergente conteniendo el *Informe de Estado*. Si se editan las propiedades de la red después de una simulación con éxito, el grifo del icono aparecerá partido para indicar que, en adelante, probablemente los resultados actuales ya no se correspondan con los datos de la red.

8.3 Resolución de Problemas

EPANET emite mensajes de Error y de Advertencia cuando surgen problemas durante la simulación de un modelo hidráulico o de calidad (ver el Apéndice B para obtener una lista completa). Los errores más frecuentes son los siguientes:

¹² En España el término de potencia se aplica sobre la potencia contratada, esto es, sobre un valor fijo, salvo que se instalen maxímetros. En tal caso, el cálculo del término de potencia resulta algo más complejo que aplicar una simple proporcionalidad sobre la potencia máxima, como hace EPANET.

Las Bombas no pueden suministrar el Caudal o la Altura requerida

EPANET emitirá un mensaje cuando a una bomba se le pide trabajar fuera del rango definido por su curva característica. Si a la bomba se le pide una altura superior a su altura a válvula cerrada, EPANET parará la bomba. Como consecuencia de ello, algunos sectores de la red pueden quedar desconectados, esto es, aislados de cualquier fuente de suministro.

La Red está Desconectada

EPANET diagnostica que una red está desconectada si existe algún nudo con demanda, al cual no es posible suministrarle agua. Esto ocurrirá cuando no se encuentra ningún trayecto libre entre dicho nudo y un embalse, depósito o nudo con caudal negativo. Si el problema es causado por el cierre de alguna línea, EPANET realizará no obstante los cálculos pertinentes (obteniendo probablemente presiones negativas muy altas en los nudos aislados) e intentará identificar la línea causante del problema, la cual será reportada en el *Informe de Estado*. Si el problema es la falta de alguna línea para realizar la conexión, entonces EPANET no podrá resolver las ecuaciones de equilibrio para determinar los caudales y presiones, y devolverá el mensaje de *Error 110* al realizar la simulación. Durante una simulación en periodo extendido es posible que algún nudo quede desconectado como consecuencia del cambio de estado de algún elemento.

Existencia de Presiones Negativas

EPANET emitirá un mensaje de advertencia cuando aparezcan presiones negativas en algún nudo con demanda positiva. Ello es un indicativo de que existe algún problema en el diseño de la red o en su modo de operación. Las presiones negativas suelen presentarse cuando la alimentación de algún sector de la red queda estrangulada por el cierre de una línea. En tal caso se emitirá un mensaje adicional indicando el sector que se queda aislado.

Sistema No Equilibrado

La condición de *Sistema No Equilibrado* ocurre cuando EPANET no puede converger a la solución, dentro del número máximo de iteraciones permitido, para algún instante de la simulación. Ello puede deberse al continuo cambio de estado de elementos como bombas, válvulas o tuberías con válvula de retención, durante el transcurso de las iteraciones. Por ejemplo, los límites de presión que controlan el estado de una bomba pueden estar demasiado próximos, o la curva de una bomba puede ser demasiado plana, provocando continuos arranques y paros.

Para eliminar la condición de sistema no equilibrado se puede intentar incrementar el número de iteraciones permitido, o bien relajar la precisión exigida para la convergencia. Ambos parámetros figuran entre las *Opciones Hidráulicas*. Si la condición de no equilibrio persiste, entonces otra de las opciones hidráulicas, denominada *Caso de No Equilibrio*, ofrece dos formas de proceder.

Una es terminar el análisis al encontrarse esta condición, y la otra es realizar todavía 10 iteraciones más, pero manteniendo inmutable el estado de todas las líneas en su estado actual. Si con ello se consigue la convergencia, se emitirá un mensaje de advertencia informando sobre la posibilidad de que el sistema sea inestable. Si aun así no se consigue la convergencia, entonces se emitirá el mensaje de "*Sistema no equilibrado*". En cualquier caso el análisis continuará con el periodo siguiente.

Si el análisis para un periodo determinado finaliza con el sistema de ecuaciones no equilibrado, el usuario debe ser consciente de que los resultados del mismo no son fiables. Dependiendo de las circunstancias que concurran, por ejemplo si los errores afectan a los caudales que entran o salen de los depósitos, la fiabilidad de los resultados puede afectar también a todos los periodos subsiguientes.

Sistema de Ecuaciones Hidráulicas No Resoluble

Si en algún momento de la simulación, el sistema de ecuaciones que equilibra caudales y energías para toda la red no puede resolverse, se emitirá el *Error 110*. Esto ocurre cuando algún sector de la red presenta una demanda, y no existen líneas físicas que lo conecten con ninguna fuente de suministro. En tal caso, EPANET emitirá además mensajes de advertencia para los nudos que queden desconectados. El sistema de ecuaciones puede resultar también irresoluble si se introducen como propiedades de algunos elementos valores poco realistas.

En este capítulo se describen los distintos modos en que pueden visualizarse los resultados de un análisis, así como los datos básicos que configuran la red. Entre los sistemas de visualización ofrecidos se encuentran los mapas, los gráficos de evolución, las tablas numéricas y los informes especiales.

9.1 Presentación de los Resultados sobre el Esquema

Existen diversos modos de observar directamente, sobre el Esquema de la Red, tanto los valores de la base de datos como los resultados de una simulación:

- Los nudos y líneas del esquema pueden colorearse conforme al código de colores establecido en las *Leyendas del Esquema* (ver Apartado 7.7) para las magnitudes actualmente seleccionadas en el *Visor del Esquema* (ver Apartado 4.7). Los colores del esquema se actualizarán al cambiar el instante de tiempo seleccionado en el Visor.
- Si la opción de *Etiquetas Flotantes* está seleccionada en el diálogo de *Preferencias Generales* (ver Apartado 4.9), al mover el ratón sobre cualquier nudo o línea se mostrará, dentro de una caja de texto suavizada, su identificativo ID, junto al valor de la magnitud actualmente asociada al nudo o línea.
- Los identificativos ID y los valores de la magnitud actual asociada a nudos y líneas, pueden también observarse sobre el esquema de forma permanente eligiendo las opciones adecuadas en la página de *Etiquetas* del diálogo de *Opciones de Visualización del Esquema* (ver Apartado 7.9).
- Pueden identificarse los Nudos o Líneas que cumplen una determinada condición, efectuando una *Consulta sobre el Esquema* (ver seguidamente).
- Se puede animar la presentación de resultados sobre el esquema de la red, avanzando o retrocediendo en el tiempo, mediante los botones de *Animación de Resultados* de la página del Esquema del Visor. La animación está disponible solamente cuando el parámetro asociado a los nudos o líneas es un parámetro calculado (p. ej. los caudales pueden animarse, pero no los diámetros).
- El esquema de la red puede ser impreso, copiado al portapapeles de Windows, o almacenado como un fichero DXF o como un meta-fichero de Windows.

Realización de Consultas sobre el Esquema

Una *Consulta sobre el Esquema* permite identificar a los nudos y líneas de la red que cumplen unas condiciones determinadas (p.ej. nudos con una presión inferior a 15 m, líneas con una velocidad superior a 1 m/s, etc). Como ejemplo, ver la Figura 9.1. Para formular una consulta sobre el esquema:

Figura 9.1 Resultados de una Consulta sobre el Esquema

- 1. Seleccionar desde el *Visor del Esquema* el instante para el cual se desea hacer la consulta.
- Seleccionar la opción Ver >> Consultar... o pulsar el botón de la Barra de Herramientas del Esquema.
- 3. Rellenar la siguiente información sobre el diálogo de *Consulta* mostrado:
 - Elegir entre localizar Nudos o Líneas
 - Elegir el parámetro a comparar
 - Elegir la relación de comparación: Menor que, Igual a, o Mayor que
 - Introducir el valor con el cual se desea comparar
- **4.** Pulsar el botón **Enviar**. Los objetos que cumplan las especificaciones impuestas quedarán resaltados en el esquema.
- 5. Al seleccionar un nuevo instante en el Visor, el resultado de la consulta será actualizado automáticamente.
- 6. Se puede ahora emitir otra consulta utilizando el mismo diálogo, o bien cerrarlo pulsando sobre el botón de la esquina superior derecha.

Cuando se cierra el diálogo de Consultas, el esquema de la red vuelve a su configuración original.

9.2 Presentación de los Resultados mediante Gráficas

Los resultados del análisis, así como ciertos parámetros de diseño, pueden visualizarse utilizando diferentes tipos de gráficas. Las gráficas pueden ser impresas, copiadas al portapapeles de Windows, y guardadas como fichero de datos o como meta-fichero de Windows. Para observar los valores de un parámetro determinado se dispone de los siguientes tipos de gráficas (ver ejemplos de cada una en la Figura 9.2):

Tipo de Gráfica	Descripción	Aplicable a
Curva de Evolución	Representa la evolución de una magnitud con el tiempo	Nudos o líneas específicos, para todo el periodo de simulación
Perfil Longitudinal	Representa la variación de una magnitud con la distancia	Una lista de nudos, para un instante dado
Mapa de Isolíneas	Muestra las regiones del espacio en las cuales el valor de la magnitud queda dentro de ciertos intervalos	Todos los nudos, para un instante dado
Curva de Distribución	Representa la fracción de elementos de la red cuya magnitud asociada es igual o inferior a un valor, frente a dicho valor	Todos los nudos o líneas, para un instante dado
Balance de Caudales	Representa la variación de la producción total y del consumo total del sistema frente al tiempo	La demanda de agua para todos los nudos, a lo largo de todo el periodo de simulación

Nota: Cuando se representa un solo nudo o línea en un gráfico de Curvas de Evolución, sobre la curva correspondiente se mostrará también cualquier dato medido que figure en un *Fichero de Calibración*, siempre que éste se haya registrado previamente en el proyecto (ver Apartado 5.3).

Figura 9.2 Ejemplos de diferentes Tipos de Gráficas

Figura 9.2 Ejemplos de diferentes Tipos de *Gráficas* (continuación de la figura anterior)

Figura 9.2 Ejemplos de diferentes Tipos de *Gráficas* (continuación de la figura anterior)

Para crear una gráfica:

- Seleccionar Informes >> Gráficos... en la Barra de Menús o pulsar el botón de la Barra de Herramientas Estándar.
- 2. Rellenar las opciones que corresponda en el diálogo de *Selección de la Gráfica*.
- 3. Pulsar el botón Aceptar para generar el gráfico

El diálogo de *Selección de la Gráfica*, que puede verse la Figura 9.3, se utiliza para seleccionar el tipo de gráfica y su contenido. Las opciones que ofrece dicho diálogo son las siguientes:

Campo	Descripción
Tipo de Gráfica	Selecciona el tipo de gráfica
Magnitud	Selecciona la magnitud a representar
Instante	Selecciona el instante de tiempo (no se aplica para Curvas de Evolución y el Balance de Caudales))
Tipo de Objetos	Selecciona entre <i>Nudos</i> o <i>Líneas</i> (en los Perfiles Longitudinales y Mapas de Isolíneas solo pueden representarse la magnitudes asociadas a Nudos)
Elementos a Representar	Selecciona los elementos a representar (aplicable solo para Curvas de Evolución y Perfiles Longitudinales)

5elección de la Gráfica		_ 🗆
Tipo de Gráfica	Tipo de Objetos	
Curva Evolución	Nudos	
Perfil Longitudinal	C Líneas	
🔿 Mapa Isolíneas		
🔿 Curva Distribución	Nudos a Representar	
© Balance Caudales	22	Añadir
Magnitud		Borrar
Cloro		Subir
Instante		Bajar
	Aceptar Cancelar	Ayuda

Figura 9.3 Diálogo de Selección de la Gráfica

Las *Curvas de Evolución* y los *Perfiles Longitudinales* requieren la selección de uno o más objetos. Para seleccionar los elementos a representar en la gráfica desde el diálogo de *Selección de la Gráfica*:

- Seleccionar el objeto (nudo o línea) sobre el Esquema de la Red, o bien desde el Visor de Datos (el diálogo permanecerá visible durante el proceso de selección).
- 2. Pulsar el botón **Añadir** en el diálogo de *Selección de la Gráfica*, para añadir el objeto a la lista actual.

En lugar del paso 2, se puede también arrastrar el objeto desde el Visor de Datos hasta la barra de título del diálogo o bien hasta el recuadro que contiene la lista.

Los restantes botones del diálogo de **Selección de la Gráfica** tienen la siguiente misión:

Botón	Acción	
Cargar (Sólo para Perf. Long.)	Carga una lista de nudos previamente almacenados	
Guardar (Sólo para Perf. Long.)	Guarda la lista de nudos actual en un fichero	
Borrar	Borra el elemento seleccionado de la lista	
Subir	Desplaza el elemento seleccionado una posición hacia arriba	
Bajar	Desplaza el elemento seleccionado una posición hacia abajo	

Para personalizar el aspecto de una gráfica:

- 1. Convertir la gráfica en la ventana activa (pulsar sobre su barra de título).
- Seleccionar Informes >> Opciones... en la Barra de Menús, o bien pulsar el botón a la Barra de Herramientas Estándar, o bien pulsar sobre la gráfica con el botón derecho del ratón.
- 3. Para personalizar el aspecto de las Curvas de Evolución, Perfiles Longitudinales, Curvas de Distribución o Balance de Caudales, utilizar el diálogo de *Opciones de la Gráfica* (Figura 9.4).
- 4. Para personalizar los Mapas de Isolíneas, utilizar el diálogo de *Opciones del Mapa de Isolíneas*.
- **Nota**: Las Curvas de Evolución, los Perfiles Longitudinales, las Curvas de Distribución y las de Balance de Caudales pueden ampliarse manteniendo pulsada la tecla **Ctrl**, al tiempo que, con el botón izquierdo del ratón pulsado, se delimita mediante un rectángulo la zona a acercar o alejar. Si el rectángulo se dibuja de derecha a izquierda, la región delimitada por éste se ampliará, y si se dibuja de izquierda a derecha se alejará. También puede desplazarse el gráfico en cualquier dirección manteniendo pulsada la tecla **Ctrl** y arrastrando el ratón sobre la gráfica con el botón derecho pulsado.

El diálogo de *Opciones de la Gráfica* (Figura 9.4) se aplica para personalizar el aspecto de los gráficos X-Y. Para utilizar este diálogo:

- 1. Seleccionar una de las cinco pestañas del diálogo, las cuales agrupan las siguientes categorías de opciones:
 - Generales
 - Eje Horizontal
 - Eje Vertical
 - Leyenda
 - Series de Datos
- 2. Validar la casilla **Por Defecto** si se desea utilizar las opciones actuales como opciones por defecto para futuros gráficos
- 3. Pulsar el botón Aceptar para validar las opciones elegidas.

Las opciones contenidas en cada una de las páginas del diálogo de Opciones de la Gráfica son las siguientes:

Página General

Opción	Descripción
Color del Marco	Color del marco que rodea el área de dibujo de la gráfica
Color del Fondo	Color de fondo del área de dibujo de la gráfica
Vista en 3D	Hace que la gráfica se dibuje con relieve en 3 dimensiones
Porcentaje Efecto 3D	Grado de relieve aplicable a las curvas dibujadas en 3D
Título Principal	Texto del título principal de la gráfica
Fuente	Tipo de fuente, tamaño y color aplicable al título principal

Opciones de la Gráfica				
Eje Horizontal Eje Vertical Leyenda Series de Datos 🚺				
Serie de Datos Serie 1				
Título en Leyenda Nudo 22 Fuente				
Líneas Marcas Rellenos Rótulos				
Estilo				
Color Rojo 💌				
Grosor 2 🜩				
Visible 🔽				
Por Defect Aceptar Cancelar Ayuda				

Figura 9.4 Diálogo de Opciones de la Gráfica

Páginas de los ejes Horizontal y Vertical

Opción	Descripción
Mínimo	Fija el valor mínimo del eje (el valor mínimo de la magnitud se indica entre paréntesis). Puede dejarse en blanco.
Máximo	Fija el valor máximo del eje (el valor máximo de la magnitud se indica entre paréntesis). Puede dejarse en blanco.
Incremento	Fija el incremento entre marcas del eje. Puede dejarse en blanco.
Auto Escalado	Si está seleccionado, se ignorarán los valores introducidos como Mínimo, Máximo e Incremento.
Rejilla	Selecciona el estilo de rejilla a dibujar.
Título del Eje	Texto del título del eje.
Fuente	Determina la fuente aplicable al título del eje.

Página de la Leyenda

Opción	Descripción
Posición	Determina la posición que ocupará la leyenda
Color	Selecciona el color a utilizar como fondo de la leyenda.
Ancho del Símbolo	Selecciona el ancho (en píxeles) que ocupará el símbolo en la leyenda.
Marco	Rodea la leyenda con un marco o no.
Visible	Hace que le leyenda sea visible o no.

Página de las Series de Datos

La página dedicada a las *Series de Datos* en el diálogo de *Opciones de la Gráfica* (ver Figura 9.4), controla el modo en que se representarán los datos individuales (o las curvas) en la gráfica. Para utilizar esta página:

- Seleccionar de la lista desplegable la Serie de Datos a editar.
- Editar el *Título* con el que se identificará dicha serie en la Leyenda.
- Pulsar el botón **Fuente...** para cambiar la fuente utilizada en la leyenda (común para todas las series) (Otras propiedades de la leyenda se seleccionan desde la página *Leyenda* en el mismo diálogo)
- Seleccionar la propiedad de las serie de datos a modificar. Las opciones son:
 - Líneas
 - Marcas
 - Rellenos
 - Rótulos

(No todas las propiedades están disponibles para todos lo tipos de gráficas)

Las propiedades que pueden modificarse en cada una de las opciones anteriores son las siguientes:

Categoría	Opción	Descripción
Líneas	Estilo	Selecciona el estilo de la línea.
	Color	Selecciona el color de la línea.
	Tamaño	Selecciona el grosor de la línea (sólo para líneas continuas).
	Visible	Determina si la línea será visible o no.
Marcas	Estilo	Selecciona el estilo de las marcas de puntos.
	Color	Selecciona el color de las marcas de puntos.
	Tamaño	Selecciona el tamaño de las marcas de puntos.
	Visible	Determina si las marcas de puntos serán visibles o no.
Rellenos	Estilo	Selecciona el tipo de patrón de relleno (en 3D)
	Color	Selecciona el color del patrón de relleno (en 3D)
	Apilado	No utilizado en EPANET.
Rótulos	Estilo	Selecciona el tipo de información a mostrar en el rótulo.
	Color	Selecciona el color de fondo del rótulo.
	Transparente	Determina si la gráfica será visible o no detrás del rótulo.
	Ver Conexiones	Determina si se visualizan o no las conexiones de los rótulos con los sectores, en los diagramas de sectores.
	Visible	Determina si los rótulos serán visibles o no.

El diálogo de *Opciones del Mapa de Isolíneas* (Figura 9.5) se utiliza para personalizar el aspecto de los mapas de isolíneas. A continuación se describen las distintas opciones del mismo:

Opciones del Mapa de Isolíneas	×
Leyenda	Estilo
🔽 Mostrar la Leyenda	Franjas Rellenas
Modificar la Leyenda	C Curvas Isolíneas
Esquema de la Red	Isolíneas
Líneas 📕 Negro 💌	Grosor 1 븆
Fondo 🔲 Blanco 💌	Líneas por Nivel
Grosor Líneas 2 🚖	
Por Defecto Aceptar	Cancelar <u>Ayuda</u>

Figura 9.5 Diálogo de Opciones del Mapa de Isolíneas

Categoría	Opción	Descripción
Leyenda	Mostrar la Leyenda	Activa o desactiva la visualización de la leyenda
	Modificar la Leyenda	Fija los códigos de colores e intervalos para las isolíneas
Esquema de la Red	Líneas	Color de las líneas que representan el esquema de la red
	Fondo	Color de fondo para todo el mapa de isolíneas
	Grosor Líneas	Grosor de las líneas que representan el esquema de al red
Estilo	Franjas Rellenas	Las franjas entre isolíneas se rellenan con un color opaco
	Curvas Isolíneas	Se dibujan solo las curvas de las isolíneas
Isolíneas	Grosor	Fija el grosor de las isolíneas principales
	Líneas por Nivel	Número de isolíneas a interpolar entre dos isolíneas principales
Por Defecto		Guarda las opciones actuales para futuros mapas de isolíneas

9.3 Presentación de los Resultados mediante Tablas

EPANET permite también ver ciertos datos del proyecto y los resultados del análisis en forma tabular, mediante una de las siguientes tablas:

- Una <u>Tabla de Elementos de la Red</u> lista las propiedades y resultados de todos los nudos o líneas de la red, para un instante determinado.
- Una <u>Tabla de Evolución</u> lista las propiedades y resultados de un nudo o línea determinado, para todos los instantes de tiempo.

Las tablas pueden ser impresas, copiadas al portapapeles de Windows, o guardadas en un fichero. La figura 9.6 muestra un ejemplo de una *Tabla de Nudos* de la Red.

Para crear una Tabla:

- Seleccionar la opción Informes >> Tablas... de la Barra de Menús, o pulsar el botón de la Barra de Herramientas Estándar.
- 2. Utilizar el diálogo de Selección de la Tabla mostrado para elegir:
 - el tipo de tabla
 - las magnitudes a mostrar en cada columna
 - el filtro a aplicar para seleccionar los datos visibles en la Tabla

🏢 Estado de los Nudos de la Red a las 4:00 Horas 📃 🔲 🗙					×
ID Nudo	Demanda LPS	Altura m	Presión m	Cloro mg/l	
Nudo 10	0,00	308,32	91,32	1,00	
Nudo 11	14,00	303,11	86,11	0,87	
Nudo 12	14,00	299,43	85,43	0,80	
Nudo 13	8,40	298,69	86,69	0,47	
Nudo 21	14,00	298,74	84,74	0,76	
Nudo 22	18,20	298,47	86,47	0,51	
Nudo 23	14,00	298,34	88,34	0,29	
Nudo 31	8,40	297,07	83,07	0,55	-

Figura 9.6 Ejemplo de una *Tabla de Nudos* de la Red

El diálogo de *Selección/Opciones de la Tabla* se utiliza para personalizar el contenido de las tablas, y contiene tres pestañas, como puede observarse en la Figura 9.7. Cuando se crea una tabla, las páginas correspondientes a las tres pestañas están accesibles. Sin embargo, una vez la tabla creada, en el diálogo de *Opciones de la Tabla* sólo aparecerán las pestañas correspondientes a Columnas y Filtros. Las opciones disponibles en cada pestaña o página son las siguientes:

Selección de la Tabla	×
Tipo Columnas Filtros	_,
Seleccionar el tipo de tabla a crear	
Nudos de la Red a las	
C Líneas de la Red a las	
C Evolución temp. en el nudo C Evolución temp. en la línea	
Aceptar Cancelar Ayuda	

Figura 9.7 Diálogo de Selección/Opciones de la Tabla

Página de Tipo de Tabla

La página *Tipo* del diálogo de *Selección de la Tabla* se utiliza para seleccionar el tipo de tabla a crear. Las opciones son:

- Todos los nudos de la red, para un instante dado
- Todas las líneas de la red, para un instante dado
- Todos los instantes, para un nudo determinado
- Todos los instantes, para una línea determinada

En los recuadros correspondientes deberá elegirse el instante deseado, o bien el nudo/línea deseado, el cual se añadirá a la barra de títulos de la tabla.

Página de Columnas

La página de *Columnas* del diálogo de *Selección/Opciones de la Tabla* (Figura 9.8) permite seleccionar los parámetros a mostrar en las columnas de la Tabla. Para ello:

- Validar la casilla junto al nombre de cada parámetro a incluir en la tabla, o bien invalidarla para excluirlo. (Se pueden utilizar las teclas Flecha Arriba y Flecha Abajo para avanzar o retroceder sobre la lista de parámetros, y la barra espaciadora para seleccionar/deseleccionar el parámetro).
- Para ordenar una Tabla de Elementos de la Red con respecto a los valores de un parámetro determinado, seleccionar el parámetro de la lista y validar la casilla **Ordenar por** situada en la parte inferior del diálogo. (El parámetro de ordenación debe ser alguno de los seleccionados en la tabla). Las Tablas de Evolución no pueden ser ordenadas.

X

Selección de la Tabla Tipo Columnas Filtros			
Seleccionar las columnas a incluir en la Tabla Cota Demanda Base Calidad Inicial Demanda Altura Presión Coro Coro			
Aceptar Cancelar Ayuda			

Figura 9.8 Página de Columnas del diálogo de Selección/Opciones de la Tabla

Página de Filtros

La página de *Filtros* del diálogo de *Selección/Opciones de la Tabla* (Figura 9.9) se utiliza para determinar las condiciones a cumplir por los elementos que aparecerán en la tabla. Para filtrar el contenido de una tabla:

- Utilizar las casillas situadas en la parte superior de la página para crear una condición (p.ej. Presión Menor que 20).
- Pulsar el botón Añadir para añadir una condición a la lista.
- Utilizar el botón Borrar para quitar la condición seleccionada de la lista.

Selección de la Tabla
Tipo Columnas Filtros
Fijar las condiciones para elegir los elementos a mostrar
Presión Menor que V 20
Presión Menor que 20
Añadir Borrar
Aceptar Cancelar <u>A</u> yuda

Figura 9.9 Página de Filtros de diálogo de Selección/Opciones de la Tabla

Cuando se especifican varias condiciones, se entiende que se concatenan con la condición Y. Si una tabla tiene declarado un filtro, al pie de la tabla se mostrará un recuadro ajustable en el que se indica el número de elementos encontrados que cumplen todas las condiciones especificadas.

Una vez se ha creado una tabla, se pueden añadir o borrar columnas, reordenarlas, o bien modificar las condiciones impuestas por el filtro. Para ello:

- Seleccionar Informes >> Opciones... de la Barra de Menús, pulsar el botón
 Image: de la barra de Herramientas Estándar cuando la ventana activa es la tabla, o bien pulsar el botón derecho del ratón sobre la tabla.
- Utilizar las páginas de *Columnas* y *Filtros* del diálogo de *Opciones de la Tabla* para modificar la tabla.

9.4 Informes Especiales

Además de gráficas y tablas, EPANET puede generar también una gran variedad de *Informes Especiales* con datos específicos. Estos son:

- El Informe de Estado
- El Informe de Energías
- El Informe de Calibración
- El Informe de Reacciones
- El Informe Completo

Todos estos informes pueden ser impresos, copiados a un fichero, o copiados al portapapeles de Windows (salvo el Informe Completo, que sólo puede almacenarse en un fichero)

🗐 Informe de Estado 📃 📕	IJŇ
12:00:00: Sistema equilibrado tras 3 iteraciones	
12:33:24: La Bomba 9 ha cambiado de estado debido a un control en el 12:33:24: Sistema equilibrado tras 4 iteraciones 12:33:24: El Embalse 9 está cerrado	De
12:33:24: El nivel en el depósito 2 es de 43.00 m y se está vaciando	
12:33:24: La Bomba 9 ha cambiado de 'Marcha' a 'Paro'	
13:00:00: Sistema equilibrado tras 1 iteraciones	
14:00:00: Sistema equilibrado tras 2 iteraciones	
15:00:00: Sistema equilibrado tras 1 iteraciones	
16:00:00: Sistema equilibrado tras 2 iteraciones	
17:00:00: Sistema equilibrado tras 1 iteraciones	
18:00:00: Sistema equilibrado tras 2 iteraciones	
19:00:00: Sistema equilibrado tras 1 iteraciones	
20:00:00: Sistema equilibrado tras 2 iteraciones	•

Figura 9.10 Extracto de un Informe de Estado

Informe de Estado

EPANET escribe todos los errores y mensajes de advertencia generados durante la ejecución de una simulación, en un *Informe de Estado* (ver Figura 9.10). Si la opción *Informe de Estado* del grupo de *Opciones Hidráulicas* del proyecto está configurada como Sí o Todo, todos los cambios de estado habidos en los elementos del sistema serán reportados igualmente en este Informe, como información adicional. Para ver el Informe de Estado de la simulación más reciente, seleccionar **Informes >> Estado** desde la Barra de Menús.

Informe de Energías

EPANET puede generar un *Informe de Energías* en el cual se ofrece una estadística de la energía consumida por cada bomba, y el coste asociado con dicho consumo, para todo el periodo de simulación (ver Figura 9.11). Para generar el Informe de Energías seleccionar **Informes** >> **Energías** de la Barra de Menús. El informe tiene dos páginas con sus correspondientes pestañas. En la página *Tabla* se muestra el consumo energético por cada bomba, en forma tabular Además, y al final de la tabla se indica el coste total y el valor del término de potencia, si procede. En la página *Diagrama* se compara para cada una de las bombas, mediante un diagrama de barras, el ratio de consumo elegido sobre el panel de la izquierda.

📑 Inform	me de Energías						
Tabla	Diagrama						
Bomba		Porcentaje Utilización	Rendimiento Medio	k₩h /Mgal	Pot.Media kW	Pot.Punta k₩	Coste /día
10		58,33	75,00	313,57	62,06	62,76	0,00
335		28,74	75,00	394,08	309,38	310,79	0,00
Coste T	otal						0,00
Término	o de Potencia						0,00

Figura 9.11	Ejemplo	de un Informe	de Energías
–			

Informe de Calibración

El *Informe de Calibración* permite comprobar la bondad con que se ajustan los resultados de la simulación proporcionados por EPANET, a las medidas de campo tomadas sobre la red objeto del modelo. Para crear un Informe de Calibración:

- **1.** Primero asegurarse de que los Datos de Calibración (o medidas de campo) para la magnitud que se desea calibrar hayan sido registrados en el proyecto (ver Apartado 5.3).
- 2. Seleccionar la opción Informes >> Calibración del Menú Principal.
- **3.** Sobre el diálogo de *Opciones del Informe de Calibración* mostrado (ver Figura 9.12):
 - seleccionar la magnitud a calibrar
 - seleccionar los puntos de medida a utilizar en el informe
- 4. Pulsar el botón Aceptar para crear el informe.

Opciones del Informe de Cali	ibración 🔀
Calibrar Respecto a	Aceptar
Nudos de Medida: ✓ 11 ✓ 19 ✓ 25 ✓ 34	Cancelar Ayuda

Figura 9.12 Diálogo de Opciones del Informe de Calibración

Una vez creado el informe, se puede llamar de nuevo al diálogo de *Opciones del Informe de Calibración*, seleccionando **Informes** >> **Opciones...** desde la Barra de Menús, o pulsando el botón de la Barra de Herramientas Estándar, mientras la ventana activa del entorno de trabajo de EPANET sea el citado informe.

En la figura 9.13 se muestra un ejemplo de un Informe de Calibración. Contiene tres páginas con sus correspondientes pestañas: Estadísticas, Gráfico de Correlación y Comparación de Valores Medios.

tadística d	e Calibra	tion para Flu	lor		
	Núm	Media	Media	Error	Desv
Pto Medida	0bs	0bs	Calc	Medio	Típic
11	19	0,49	0,44	0,064	0,103
19	20	0,75	0,54	0,254	0,378
25	20	0,75	0,68	0,085	0,147
34	19	0,92	0,95	0,103	0,179
Red	78	0,73	0,65	0,128	0,229

Figura 9.13 Ejemplo de un Informe de Calibración

Página de Estadísticas

La página de *Estadísticas* del Informe de Calibración ofrece diversas estadísticas sobre las desviaciones entre los valores medidos y calculados para cada uno de los puntos de medida, así como para la red en su conjunto. Si alguna medida en algún punto hubiera sido tomada en un instante comprendido entre los instantes reportados en los resultados de la simulación, entonces el valor calculado para dicho instante se interpola entre los valores calculados en los extremos del intervalo a que pertenece la medida. Las estadísticas calculadas para cada punto de medida son:

- Número de observaciones
- Valor medio de las medidas
- Valor medio de los valores calculados
- Media de los errores absolutos entre los valores medidos y calculados para todas las observaciones
- Error cuadrático medio (raíz cuadrada de la media de los errores cuadráticos entre los valores medidos y calculados para todas las observaciones).

También se proporcionan las estadísticas para toda la red en su conjunto (esto es, considerando todo los puntos de medida y todas las observaciones simultáneamente). Finalmente se indica la correlación existente entre los valores medios (exactamente el coeficiente de correlación entre la media de los valores observados y la media de los valores calculados en cada punto).

Página del Gráfico de Correlación

La página del *Gráfico de Correlación* del Informe de Calibración muestra un gráfico de puntos dispersos cuyas coordenadas corresponden al valor medido y calculado en cada observación, para cada uno de los puntos de medida. A cada punto de medida se le asigna un color diferente para distinguir los puntos de la gráfica asociados con el mismo. Cuanto más se acerquen los puntos representados a una recta inclinada 45°, mayor será el grado de ajuste entre los valores medidos y calculados.

Página de Comparación de Valores Medios

La página de *Comparación de Valores Medios* del Informe de Calibración compara, mediante un diagrama de barras, los valores medios observados y calculados de la magnitud objeto de calibración, en cada uno de los puntos de medida.

Informe de Reacciones

El *Informe de Reacciones*, disponible siempre y cuando se haya simulado el comportamiento de una sustancia reactiva transportada por el agua, muestra gráficamente el valor global medio de las reacciones habidas a lo largo de toda simulación, en los siguientes puntos en:

- el seno del agua, mientras ésta circula por las tuberías
- las paredes de las tuberías
- los depósitos de almacenamiento.

En un diagrama de sectores se muestra el porcentaje de contaminante consumido o generado en cada una de estas zonas, respecto al consumo total habido. En la leyenda del diagrama se indica el consumo o aporte medio de sustancia (o velocidad media de reacción) en cada zona, en unidades de masa por día. Al pie del diagrama se refleja además la cantidad total de sustancia contaminante que es inyectada a la red, en las mismas unidades.

La información reflejada en el Informe de Reacciones da una idea, a primera vista, de cuáles son los mecanismos responsables de la mayor parte del crecimiento o decrecimiento de la sustancia en la red. Por ejemplo, si la mayor parte de la pérdida de cloro en la red se produce en los depósitos y no en las paredes de las tuberías, cabe pensar que una política de limpieza y sustitución de las tuberías más antiguas va a tener poco efecto en la mejora del cloro residual.

También se puede activar el diálogo de *Opciones de la Gráfica* para modificar el aspecto del diagrama de sectores seleccionando **Informes** >> **Opciones...** de la Barra de Menús, o pulsando el botón de la Barra de Herramienta Estándar cuando la ventana activa es el Informe de Reacciones, o bien pulsando sobre el mismo diagrama con el botón derecho del ratón.

Informe Completo

Cuando aparece el icono en la *Barra de Estado*, se puede crear un fichero de texto en disco, que contenga un informe completo de los resultados calculados para todos los nudos y líneas, en todos los instantes de tiempo. Para ello, elegir la opción **Informes** >> **Completo...** del Menú Principal. Este informe, que puede verse o imprimirse desde fuera de EPANET utilizando cualquier editor o procesador de textos, contiene la siguiente información:

- el título del proyecto y su descripción
- un listado con los nudos extremos, longitud y diámetro de cada línea
- un listado con las estadísticas de consumo energético de cada bomba
- un par de tablas para cada instante de tiempo, en las cuales se listan los valores calculados en cada nudo (demanda, altura, presión y calidad) y en cada línea (caudal, velocidad, pérdida unitaria y estado).

Esta opción es útil sobretodo para documentar los resultados finales del análisis de una red de tamaño pequeño o moderado (un fichero de informe completo para una red grande y con un periodo de simulación largo puede consumir docenas de megabytes en el disco). Los otros tipos de informes descritos en este capítulo permiten analizar los resultados de una forma más selectiva.

En este capítulo se describe cómo imprimir, copiar al portapapeles de Windows, o copiar a un fichero el contenido de la ventana activa actual del espacio de trabajo de EPANET. Dicha ventana puede corresponder al esquema de la red, a una gráfica, a una tabla, a un informe, o a las propiedades de un objeto seleccionado desde la ventana del Visor.

10.1 Selección de la Impresora

Para Seleccionar la Impresora a utilizar, y establecer sus propiedades:

- 1. Seleccionar Archivo >> Preparar página... del Menú Principal.
- 2. Pulsar el botón **Impresora...** en el diálogo *Preparar Página* mostrado (ver Figura 10.1).
- 3. Seleccionar una impresora determinada, de entre todas las instaladas en el entorno Windows, que se ofrecen en el desplegable del nuevo diálogo mostrado.
- **4.** Pulsar el botón **Propiedades** para seleccionar las propiedades de la impresora (éstas varían en función del tipo de impresora).
- 5. Pulsar Aceptar en cada uno de los diálogos abiertos, para aceptar las opciones elegidas.

10.2 Formato de la Página

Para establecer el Formato de la Página impresa:

- 1. Seleccionar Archivo >> Preparar página... del Menú Principal
- 2. Utilizar la página de *Márgenes*, del diálogo *Preparar Página* mostrado (Figura 10.1), para:
 - Seleccionar una impresora
 - Seleccionar la orientación del papel (Vertical u Horizontal)
 - Fijar los márgenes izquierdo, derecho, superior e inferior
- 3. Utilizar la página de Cabeceras/Pies del mismo diálogo para:
 - Introducir el texto que aparecerá en la cabecera cada página
 - Indicar si la cabecera debe imprimirse o no, así como su alineación en el primer caso.
 - Introducir el texto que aparecerá al pié de cada página
 - Indicar si el pié debe imprimirse o no, así como su alineación en el primer caso.
 - Indicar si las páginas deben ir numeradas o no, y en caso afirmativo, la posición del número de página
- 4. Pulsar el botón Aceptar para validar todas las entradas.

Preparar Página	×
Márgenes Cabeceras	/Pies
Impresora Tamaño del Papel Ancho: 210,0 mm Alto: 296,9 mm	
Orientación	Márgenes (mm)
 Vertical 	Izquierdo 25,40 Derecho 25,40
O Horizontal	Superior 38,10 Inferior 25,40
	Aceptar

Figura 10.1 Diálogo Preparar Página

10.3 Vista Previa de la Página

Para obtener una *Vista Previa* de la página impresa, correspondiente a la ventana activa actual, seleccionar **Archivo** >> **Vista Previa** desde el Menú Principal. Aparecerá una nueva ventana, donde puede observarse el aspecto que presentará cada una de las páginas impresas del objeto elegido.

10.4 Imprimir la Ventana Actual

Para *Imprimir* el contenido de la *Ventana* actualmente activa en el espacio de trabajo de EPANET, seleccionar **Archivo** >> **Imprimir** desde el Menú Principal

o pulsar el botón 🕮 de la Barra de Herramientas Estándar. Se pueden imprimir los siguientes objetos:

- Los Datos del Visor (las propiedades del objeto actualmente seleccionado)
- El Esquema de la Red (a la escala de visualización actual)
- Las Gráficas (Curvas de Evolución, Perfiles, Mapas de Isolíneas, Curvas de Distribución y Balance de Caudales)
- Las Tablas (Tablas de Elementos de la Red y Tablas de Evolución)
- Los Informes Especiales (Estado, Energías, Calibración y Reacciones).

10.5 Copiar al Portapapeles o a un Fichero

EPANET puede copiar los textos y gráficos de la ventana actoiva, tanto al portapapeles de Windows como a un fichero. Las ventanas que admiten estas opciones de copiado son la del Esquema de la Red, las Gráficas, las Tablas y los Informes. Para *Copiar* el contenido de la ventana actual al portapapeles o a un fichero:

- 1. Seleccionar Edición >> Copiar... a desde el Menú Principal, o
 - pulsar el botón 🖻 situado en la Barra de Herramientas Estándar.
- 2. Seleccionar las opciones deseadas del diálogo *Copiar* mostrado (ver Figura 10.2) y pulsar el botón **Aceptar**.
- 3. Si se ha seleccionado copiar a fichero, introducir el nombre del fichero en el diálogo *Guardar Como* mostrado y pulsar **Aceptar**.

Para elegir cómo y dónde copiar los datos, utilizar el diálogo *Copiar* del siguiente modo:

- 1. Seleccionar un destino para transferir el contenido de la ventana (*Portapapeles* o *Fichero*)
- 2. Seleccionar el formato bajo el cual se desea copiar dicho contenido:
 - Mapa de bits (sólo para gráficos)
 - Metafichero (sólo para gráficos)
 - *Datos* (textos, celdas seleccionadas de una tabla, o datos utilizados para construir una gráfica)
- **3.** Pulsar **Aceptar** para validar todas las opciones elegidas, o **Cancelar** para abandonar la acción de copiar.

Copiar Esquema de la	Red 🔀	
Copiar a	Copiar como	
Portapapeles	• Mapa de Bits	
C Fichero	C Metafichero C Datos (Texto)	
Aceptar Ca	ancelar <u>A</u> yuda	

Figura 10.2 Diálogo Copiar

118

Este capítulo introduce el concepto de Escenarios de un Proyecto y muestra cómo se pueden importar y exportar los diferentes tipos de datos, tales como el esquema de la red o la base de datos entera del proyecto.

11.1 Escenarios de un Proyecto

Se entiende por Escenario de un Proyecto a un subconjunto de datos, de entre todos los que caracterizan las condiciones actuales bajo las cuales se está analizando la red. Un escenario puede contener una o más de las siguientes categorías de datos:

- Demandas en todos los nudos (demanda base y curva de modulación para todos los tipos de demanda)
- Calidad inicial del agua en todos los nudos
- Diámetros de todas las tuberías
- Coeficientes de rugosidad para todas las tuberías
- Coeficientes de reacción (en el medio y en la pared) para todas las tuberías
- Leyes de control simples y basadas en reglas.

EPANET puede compilar un escenario en base a alguna o todas las categorías de datos listadas, guardar el escenario en un fichero, y volver a leer el escenario más tarde.

Los Escenarios proporcionan un método eficiente y sistemático de analizar las diversas alternativas de diseño y operación de la red. Pueden utilizarse para examinar el impacto de diferentes condiciones de carga, buscar valores óptimos de los parámetros de la red (en calibración por ejemplo), o evaluar los cambios en la red ante diversas estrategias de operación. Los ficheros de escenario se almacenan como ficheros de texto ASCII y pueden crearse o modificarse desde fuera de EPANET, utilizando un editor de textos o una hoja de cálculo.

11.2 Exportación de un Escenario

Para *Exportar un Escenario* de un proyecto a un fichero de texto:

- 1. Seleccionar Archivo >> Exportar >> Escenario... desde el Menú Principal.
- 2. En el diálogo de *Exportación de un Escenario* mostrado (ver Figura 11.1) seleccionar las categorías de datos a exportar.
- **3.** Escribir opcionalmente, en el campo reservado para *Notas*, una descripción del escenario a guardar.
- 4. Pulsar el botón Aceptar para confirmar todas las opciones.

- 5. En el diálogo *Guardar el Escenario como*, seleccionar una carpeta y el nombre del fichero de escenario. Los ficheros de escenario toman como extensión por defecto .SCN.
- 6. Pulsar el botón Aceptar para completar la exportación.

Đ	portación de un Escenario	×
	Datos a Exportar	
	🔲 Demandas en Nudos	🗹 Calidad Inicial
	🔲 Diámetros de Tuberías	✓ Coeficientes de Reacción
	🔲 Rugosidad de Tuberías	Leyes de Control
	Notas	
	Caso 1: Datos Base para ca	alibración Modelo de Calidad
	Aceptar	Cancelar <u>Ayuda</u>

Figura 11.1 Diálogo de Exportación de un Escenario

El escenario exportado puede ser importado de nuevo en el proyecto más tarde, como se describe a continuación.

11.3 Importación de un Escenario

Para Importar un Escenario a un proyecto desde un fichero:

- Seleccionar Archivo >> Importar >> Escenario... desde el Menú Principal.
- 2. Utilizar el diálogo *Abrir Fichero* para seleccionar el fichero de escenario a importar. En el recuadro titulado *Contenido* de dicho diálogo podrán verse las primeras líneas del fichero seleccionado, con la intención de ayudar a localizar el fichero deseado.
- 3. Pulsar el botón Aceptar para aceptar la selección.

Los datos contenidos en el fichero de escenario reemplazarán a cualquier otro dato existente del mismo tipo en el proyecto actual.

11.4 Importación Parcial de una Red

EPANET tiene la posibilidad de importar el trazado de las tuberías de una red desde un simple fichero de texto. La descripción de la red en este caso consta simplemente de los identificativos ID de los nudos, junto a sus coordenadas, y los identificativos ID de las líneas, junto a los ID de sus nudos extremos correspondientes (también se admiten vértices para definir el trazado de las líneas). Mediante este procedimiento se simplifica la utilización de programas de CAD o SIG, para digitalizar el trazado de la red y transferir a continuación estos datos a EPANET.

El formato de un fichero de texto utilizado para describir el trazado de una red es el siguiente, donde los textos entre corchetes (< >) hacen referencia al tipo de información que debe figurar en esa línea del fichero¹³:

[TITLE] <descripción opcional del fichero>

[JUNCTIONS] <Identificativo ID de cada nudo>

[PIPES]

<Identificativo ID de cada tubería, seguido por los identificativos ID de sus nudos extremos>

[COORDINATES] <Identificativo ID de un nudo y sus coordenadas X e Y>

[VERTICES]

<Identificativo ID de una tubería y coordenadas X e Y de cada vértice intermedio para trazados no rectilíneos>

Obsérvese que sólo serán representados los nudos y tuberías de la red. Otros elementos, tales como depósitos y bombas, pueden importarse como nudos o tuberías respectivamente y reconvertirse posteriormente, o bien pueden ser añadidos más tarde. El usuario debe encargarse de transferir la información procedente de un sistema CAD o SIG a un fichero de texto con el formato indicado.

Además de esta representación parcial de la red, se pueden escribir todas las especificaciones completas de la red en un fichero de texto, utilizando el mismo formato que emplea EPANET cuando exporta un proyecto a un fichero de texto (ver Apartado 11.7 más adelante), el cual es descrito en el Apéndice C. En este caso el fichero contendrá también las propiedades de los nudos y líneas, tales como cotas, demandas, diámetros, rugosidades, etc.

11.5 Importación del Esquema de una Red

Para *Importar las coordenadas del Esquema de una Red*, almacenadas en un fichero de texto:

- 1. Seleccionar Archivo >> Importar >> Esquema... desde el Menú Principal.
- 2. Seleccionar el fichero que contiene la información del esquema de la red, desde el diálogo *Abrir un Esquema* mostrado.
- **3.** Pulsar **Aceptar** para reemplazar el esquema actual de la red por el descrito en el fichero.

¹³ Se ha preferido conservar los nombres en inglés de las distintas secciones del fichero, por compatibilidad con los ficheros ya preparados para la versión inglesa (NdT)

11.6 Exportación del Esquema de una Red

La vista actual del esquema de la red puede almacenarse en un fichero utilizando bien el formato DXF de Autodesk (Drawing eXchange Format), el formato de un meta-fichero mejorado de Windows (EMF), o el formato de texto ASCII propio de EPANET (.map). El formato DXF es legible desde muchas aplicaciones CAD (Computer Aided Design). Los meta-ficheros pueden insertarse en los documentos de un procesador de textos o cargarse en programas de dibujo para ser reescalados o editados. Ambos formatos son de tipo vectorial y no pierden resolución al mostrar el dibujo a diferentes escalas.

Para *Exportar el Esquema completo de la Red* a un fichero DXF, a un metafichero o a un fichero de texto:

- 1. Seleccionar Archivo >> Exportar >> Esquema... desde el Menú Principal.
- 2. En el diálogo de *Exportar el Esquema* mostrado (ver Figura 11.2), seleccionar el formato bajo el cual se desea guardar el esquema.
- 3. Si se selecciona el formato DXF, se puede aún elegir cómo representar los nudos en el fichero DXF. Las formas de representación posibles son mediante círculos sin rellenar, círculos rellenos o cuadrados rellenos. No todos los lectores de ficheros DXF pueden reconocer los comandos DXF utilizados para representar círculos rellenos.
- 4. Una vez elegido el formato, pulsar **Aceptar** e introducir el nombre del fichero en el diálogo *Guardar el Esquema como* mostrado a continuación.

Exportar el Esquema	×
Exportar el Esquema como:	
C Fichero de Texto (.map)	Aceptar
C Fichero Metafile mejorado (.emf)	Cancelar
Fichero Intercambio Dibujos (.dxf)	Ayuda
Dibujar Nudos como:	
Círculos sin rellenar	
C Círculos rellenos	
C Cuadrados rellenos	

Figura 11.2 Diálogo para Exportar el Esquema

11.7 Exportación a Fichero de Texto

Para Exportar los datos de un proyecto a un Fichero de Texto:

- 1. Seleccionar Archivo >> Exportar >> Red... desde el Menú Principal.
- 2. En el diálogo *Guardar la Red Como*, introducir el nombre del fichero con que se desea guardar la información de la red (la extensión por defecto será .INP).
- 3. Pulsar el botón Aceptar para completar la exportación.

El fichero de salida será escrito en formato de texto ASCII, con los datos agrupados en distintas categorías, cada una precedida por una etiqueta que permite identificarla claramente. Este fichero puede leerse de nuevo desde EPANET para analizar la red en otro momento, utilizando el comando **Archivo** >> **Abrir...** o bien el comando **Archivo** >> **Importar** >> **Red...**, ambos desde el Menú Principal. La descripción completa de la red siguiendo este formato de entrada, puede crearse desde fuera de EPANET utilizando cualquier editor de textos u hoja de cálculo. En el Apéndice C se da una descripción completa del formato de un fichero de entrada tipo .INP.

Es una buena idea guardar siempre una versión de toda la información contenida en la base de datos bajo este formato, de forma que ésta pueda resultar accesible para cualquier persona. Sin embargo, para el uso continuado de EPANET es más eficiente guardar los datos en el formato propio de los ficheros de proyecto (extensión .NET) utilizando la orden **Archivo >> Guardar** o **Archivo >> Guardar como...** del Menú Principal. Este formato contiene información adicional del proyecto, tal como los colores y rangos elegidos para las leyendas, el conjunto de opciones de visualización del esquema, los nombres de los ficheros de calibración registrados, y cualquier opción de impresión que haya sido seleccionada. ¿Cómo importar una red creada con un programa de CAD o SIG?

Ver Apartado 11.4

¿Cómo simular un bombeo desde una perforación?

Representar el pozo como un embalse cuya altura sea igual a la altura piezométrica del acuífero subterráneo. A continuación conectar una bomba entre el embalse y la tubería de alimentación a la red. Se puede también añadir una tubería ficticia después de la bomba para representar las pérdidas en la rejilla del pozo¹⁴.

Si se conoce el caudal de extracción del pozo, una alternativa consiste en reemplazar el conjunto bomba-pozo por un nudo de caudal, y asignarle al mismo una demanda negativa igual al caudal del pozo. Si el caudal de extracción varía con el tiempo, se le puede asociar también una curva de modulación.

¿Cómo dimensionar una bomba para obtener un caudal determinado?

Fijar el estado de la bomba como **Parada**. En el nudo de aspiración de la bomba (entrada) añadir una demanda igual al caudal deseado, y añadir otra demanda del mismo valor y signo negativo en el nudo de impulsión. Una vez realizado el análisis, la diferencia de alturas piezométricas entre ambos nudos será la altura de la bomba requerida.

¿Cómo dimensionar una bomba para obtener una altura dada?

Reemplazar la bomba por una Válvula de Rotura de Carga orientada en dirección opuesta. Convertir la altura deseada en un salto de presión equivalente, y fijar éste como consigna de la válvula. Una vez realizado el análisis, el caudal que atraviesa la válvula será el caudal de diseño de la bomba.

¿Cómo forzar el flujo de entrada a la red desde los depósitos y su modulación?

Reemplazar los depósitos por nudos de caudal y asignarles una demanda negativa igual al caudal que se desea forzar en cada caso, junto a su modulación¹⁵ (Asegurarse de que al menos queda un depósito o embalse activo en la red; en otro caso EPANET emitirá un mensaje de error)

¹⁴ Si se quiere tener en cuenta el descenso dinámico del pozo, se puede intercalar entre el embalse y la bomba una Válvula de Propósito General, cuya curva de comportamiento responda a la curva de descenso del pozo. Además, deberá modelizarse también, a la salida de la bomba, la tubería de ascenso en el interior del pozo para considerar el desnivel entre el "embalse" y la cota del brocal, cuyas pérdidas pueden ser importantes en pozos de gran profundidad (NdT).

 $^{^{15}}$ Para modular el caudal entrante a un nudo, lo más práctico es asignarle una demanda base de -1, e introducir los valores absolutos del caudal como coeficientes de la curva de modulación. Si el caudal entra y sale del depósito durante la simulación, se pueden utilizar coeficientes negativos en la curva de modulación para representar los caudales entrantes al depósito. (NdT)

¿Cómo analizar las condiciones de incendio en un nudo en particular?

Para determinar la presión máxima disponible en un nudo, cuando el caudal de demanda debe incrementarse para satisfacer las necesidades de un incendio, añadir el caudal de incendio a la demanda del nudo, realizar la simulación, y anotar la presión resultante en el nudo.

Para determinar el caudal máximo que puede suministrarse desde un nudo a una presión dada, forzar el coeficiente del emisor en el nudo a un valor muy elevado (p. ej. 100 veces el máximo caudal esperado) y añadir la presión requerida en el nudo a su cota (en caso de emplear unidades US, multiplicar la presión en psi por 2,3, ya que 1 psi = 2,3 ft). Una vez realizada la simulación, el caudal de incendio disponible será la demanda resultante en el nudo, menos la demanda inicialmente asignada.

¿Cómo simular una válvula reguladora de presión con antirretorno, controlada por caudal?

Utilizar una Válvula de Propósito General cuya curva de pérdidas refleje un incremento de la pérdida a medida que se reduce el caudal.¹⁶ Para construir dicha curva debe obtenerse información del fabricante. Ubicar además una válvula de retención (p. ej. una tubería corta con su estado inicial *V.Retención*) en serie con la válvula general, para impedir el flujo inverso.

¿Cómo simular un calderín neumático presurizado?

Si la variación de la presión en el calderín es despreciable, emplear un depósito cilíndrico de gran diámetro y poca altura, y fijar su cota de solera próxima a la altura manométrica de trabajo (cota + presión) del calderín. Seleccionar las dimensiones del depósito de modo que los cambios de volumen afecten muy poco a los cambios de nivel.

Si la presión manométrica en el interior del calderín varía entre H_1 y H_2 , siendo los volúmenes de agua correspondientes en el mismo V_1 y V_2 , utilizar un depósito ficticio de geometría variable, cuya curva de cubicación responda a la expresión:

$$V = V_I \frac{H_I + 10,3}{H + 10,3}$$
¹⁷

donde *V* es el volumen de agua en el calderín, y *H* la presión manométrica en el mismo para dicho volumen, expresada en mca (Si *p* es la presión manométrica del aire en el calderín, expresada en Kp/cm², entonces $H \approx 10 p$). Además, debe igualarse la cota del depósito ficticio a la cota del calderín, para equiparar la presión manométrica con el nivel del agua en el mismo. Si se conoce el volumen V_c del calderín, y la presión manométrica de llenado H_o cuando el aire ocupa todo el calderín, entonces la curva de cubicación puede también calcularse mediante la expresión:

$$V = V_C \frac{H - H_o}{H + 10.3}$$
¹⁷

¹⁶ Normalmente las curvas de pérdidas de las válvulas muestran un incremento de la pérdida al aumentar el caudal. No obstante, existen, y empiezan a introducirse en el mercado español, válvulas reductoras cuya pérdida aumenta al disminuir el caudal de paso, con el fin de reducir la presión a la salida en las horas nocturnas de menor demanda y aumentarla en las horas de mayor demanda (NdT)

¹⁷ Las expresiones anteriores se derivan del supuesto de un comportamiento isotermo del aire en el calderín, conforme a las ecuaciones $p^* V_{aire} = p^*_{\ 1} V_{aire,1} = p^*_{\ 0} V_c$, donde $p^*(abs) = H + 10,3 \text{ m y } V_{aire} = V_c - V$ (NdT)

¿Cómo simular una descarga a un depósito por encima de la superficie libre?

Aplicar la configuración mostrada en la figura siguiente:

La entrada al depósito es simulada mediante una Válvula Sostenedora de Presión, seguida de una tubería de corta longitud y gran diámetro. La presión de consigna de la válvula se fija en 0 m y la cota de sus dos nudos extremos debe hacerse igual a la cota de descarga de la tubería de entrada. Añadir además una válvula de retención a la salida del depósito para impedir el flujo inverso.¹⁸

¿Cómo determinar las condiciones iniciales para llevar a cabo un análisis de calidad del agua?

Si existen mediciones experimentales del fenómeno a simular con motivo de una campaña de calibración, asignar las medidas de campo a los nudos en los que se hayan efectuado mediciones, e interpolar (de forma aproximada) para determinar los valores iniciales en los restantes nudos. Se recomienda fehacientemente incluir los depósitos y los puntos de inyección entre los puntos de medida.

Para simular condiciones futuras, comenzar asignando valores arbitrarios del parámetro de calidad en los nudos (excepto en los depósitos) y llevar a cabo una simulación prolongada durante un número de ciclos suficiente, en los que la modulación de la demanda se repita, hasta que los resultados de la calidad del agua se repitan también periódicamente. El número de ciclos necesarios puede reducirse si se hace una buena estimación inicial de la calidad del agua en los depósitos. Por ejemplo, si se simula el tiempo de permanencia del agua en la red, éste puede igualarse inicialmente al tiempo de permanencia del agua en los depósitos, el cual, expresado en horas, es aproximadamente es igual a 24 veces la inversa de la fracción de volumen renovada diariamente.

¿Cómo estimar los valores de los coeficientes de reacción en el medio y en la pared?

Los coeficientes de reacción en el medio pueden estimarse realizando su medida con una muestra en un frasco de laboratorio (ver <u>Reacciones en el seno del agua</u> en el Apartado 3.4). Los coeficientes de reacción en la pared no pueden medirse directamente. Deben obtenerse por calibración a partir de los datos procedentes de campañas de medidas (p. ej. ajustando sus valores por procedimientos de prueba y error, hasta que los resultados del modelo se ajusten lo mejor posible a las medidas de campo). Las paredes de las tuberías de plástico y de las tuberías de hierro con un revestimiento reciente, normalmente no presentan una demanda de desinfectantes como el cloro o las cloraminas.

¹⁸ El modelo propuesto se comporta igualmente bien, si el agua del depósito llegase a inundar la boca de descarga de la tubería. En tal caso, el nivel en el depósito impone la presión a la salida de la tubería, (igual a la cota de la lámina de agua menos la cota de descarga de la tubería) y la válvula quedará en estado abierto, ya que la presión aguas arriba supera los 0 m fijados como consigna (NdT)

¿Cómo simular una estación de recloración?

Situar la Estación de Recloración en un nudo con demanda cero o positiva, o bien en un depósito. Seleccionar el nudo en el Editor de Propiedades y pulsar el botón con puntos suspensivos del campo *Intensidad de la Fuente*, para abrir el Editor de Fuentes Contaminantes. En el referido Editor seleccionar como Tipo de Fuente **Reinyección a Punto Fijo**, e introducir en el campo *Intensidad de la Fuente* el valor de la concentración que el equipo de recloración se encarga de mantener fija a la salida. En el caso de que la estación de recloración incremente la concentración del flujo que sale del nudo en un valor prefijado, seleccionar como Tipo de Fuente **Reinyección Incremental**, y poner como *Intensidad de la Fuente* el incremento de concentración a aplicar sobre la concentración del flujo que sale del nudo. Se puede especificar también el identificativo ID de una Curva de Modulación, si se desea cambiar la intensidad de la recloración con el tiempo.

¿Cómo simular el crecimiento de los THM en una red?

El crecimiento de los Trihalometanos (THM) en el agua puede simularse utilizando una cinética de primer orden con saturación. Seleccionar *Opciones* – *Reacciones* desde el Visor de Datos. Fijar el *Orden de la Reacción en el Medio* en 1 y la *Concentración Límite* en la concentración máxima que puede alcanzar la formación de THM en el agua, para un tiempo de permanencia del agua en la red muy prolongado. Introducir como *Coeficiente Global de Reacción en el Medio* un valor positivo que refleje el ritmo de producción de THM (p. ej. 0.7 dividido por el tiempo que tarda en duplicarse la concentración de THM). Pueden obtenerse estimaciones del coeficiente de reacción y de la concentración límite en el laboratorio. Hay que tener en cuenta además, que el coeficiente de reacción se incrementa al aumentar la temperatura del agua. Los valores iniciales de la concentración de THM en todos los nudos de la red deben igualar como mínimo a la concentración de THM que entra en la red desde los puntos de inyección¹⁹.

¿Se puede utilizar un editor de textos para editar las propiedades de la red mientras se está ejecutando EPANET?

Guardar los datos de la red en un fichero de texto ASCII (seleccionar **Archivo** >> **Exportar** >> **Red...**). Estando aún en ejecución EPANET, arrancar el editor de textos. Cargar en el editor el fichero de red creado, y una vez realizada la edición, guardarlo en disco. Volver a EPANET y leer el fichero (seleccionar **Archivo** >> **Abrir...**). Se puede alternar entre EPANET y el editor de textos cuantas veces se quiera para realizar más cambios. Sólo hay que llevar cuidado en guardar los cambios realizados desde el editor, y reabrir el fichero desde EPANET cada vez. Si se utiliza como editor un procesador de textos (como por ejemplo *Write*) o una hoja de cálculo, recordar que el fichero debe guardarse cada vez como un fichero de texto ASCII.

¿Es posible ejecutar múltiples sesiones de EPANET al mismo tiempo?

Sí. Ello puede resultar útil para realizar comparaciones frente a frente de dos o más escenarios de diseño o de operación de una misma red.

¹⁹ Y no superar, por supuesto, el valor de la concentración límite (NdT)

APÉNDICE A - UNIDADES DE MEDIDA²⁰

PARÁMETRO	SISTEMA MÉTRICO SI	SIST. CONVENCIONAL US
Concentración	mg/l o µg/l	mg/l o µg/l
Demanda	(ver unidades de Caudal)	(ver unidades de Caudal)
Diámetro (Tuberías)	milímetros (mm)	pulgadas (in)
Diámetro (Depósitos)	metros (m)	pies (ft)
Rendimiento	tanto por cien (%)	tanto por cien (%)
Cota	metros (m)	pies (ft)
Coeficiente del Emisor	unid. caudal / (metros) ^{1/2}	unid. caudal / (psi) ^{1/2}
Energía	kilovatios-hora (kWh)	kilovatios-hora (kWh)
Caudal	LPS (litros / sec) LPM (litros / min) MLD (megalitros / día) M3H (metros cúbicos / h) M3D (metros cúbicos / día)	CFS (pies cúbicos / sec) GPM (galones / min) MGD (millones gal / día) IMGD (MGD Imperiales) AFD (acres-pies / día)
Factor de Fricción	adimensional	adimensional
Altura Piezométrica	metros (m)	pies (ft)
Longitud	metros (m)	pies (ft)
Coef. Pérdidas Menores	adimensional	adimensional
Potencia	kilovatios (kW)	caballos (HP)
Presión	metros columna agua (mca)	libras por pulgada cuadrada (psi)
Coef. Reacción (Medio)	1/día (1 ^{er} orden)	1/día (1 ^{er} orden)
Coef. Reacción (Pared)	masa / metro ² / día (orden 0) metros / día (1 ^{er} orden)	masa / pies ² / día (orden 0) pies / día (1 ^{er} orden)
Coef. Rugosidad	milímetros (Darcy-Weisbach), adimensional en otro caso	milipiés (Darcy-Weisbach), adimensional en otro caso
Caudal Másico de una Fuente Contaminante	masa / minuto (kg/min)	masa / minuto (kg/min)
Velocidad	metros / segundo (m/s)	pies / segundo (ft/s)
Volumen	metros cúbicos (m ³)	pies cúbicos (ft ³)
Tiempo Permanencia	horas (h)	horas (h)

Nota: Las Unidades Métricas SI se adoptan automáticamente cuando se elige como unidades de caudal LPS, LPM, MLD, M3H ó M3D. Las Unidades Convencionales US se adoptan automáticamente cuando se elige como unidades de caudal CFS, GPM, AFD, o MGD/IMGD.

 $^{^{20}}$ 1 pie = 0,3048 m; 1 pulg = 0,0254 m; 1 acre = 4047 m²; 1 galón (US) = 3,785 lit;

¹ galón (Imp) = 4,546 lit; 1 gpm (US) = 3,785 lpm = 0,063 l/s; 1 gpm (Imp) = 4,546 lpm = 0,0758 l/s; 1 libra = 0,454 Kg; 1 psi (libra/pulgada²) = 0,7031 mca; 1 caballo (US) = 1,014 CV (SI) = 0,746 kW (NdT)

130
ID	Significado
101	Se ha cancelado la simulación por falta de memoria disponible.
110	Se ha concluido el análisis al no poder resolver la ecuaciones hidráulicas. Comprobar si existen partes de la red no conectadas a ningún depósito o embalse, y si los valores de los datos de entrada son razonables.
200	Se han detectado uno o más errores entre los datos de entrada. La naturaleza del error se identifica mediante alguno de los errores de la serie 200 que se describen a continuación.
201	Hay un error sintáctico en una línea del fichero de entrada, que recoge los datos de la red. Este error es factible sólo para ficheros .INP creados por el usuario desde fuera de EPANET.
202	Se ha asignado un valor numérico ilegal a una propiedad.
203	Un objeto hace referencia a un nudo no definido.
204	Un objeto hace referencia a una línea no definida.
205	Un objeto hace referencia a una curva de modulación no definida.
206	Un objeto hace referencia a una curva de comportamiento no definida.
207	Se ha hecho un intento de controlar una válvula de retención. Cuando se declara que una tubería posee una Válvula de Retención con el Editor de Propiedades, su estado no puede cambiarse mediante una ley de control simple o basada en reglas.
208	Se ha hecho una referencia a un nudo no definido. Esto puede ocurrir en una ley de control, por ejemplo.
209	Se ha asignado un valor ilegal a una propiedad de un nudo.
210	Se ha hecho una referencia a una línea no definida. Esto puede ocurrir en una ley de control, por ejemplo.
211	Se ha asignado un valor ilegal a una propiedad de una línea.
212	El análisis de procedencias hace referencia a un nudo fuente no definido.
213	Alguna de las opciones de cálculo tiene un valor ilegal (por ejemplo, un valor negativo de algún intervalo de tiempo).
214	Existen demasiados caracteres en una línea del fichero de entrada. Las líneas de un fichero .INP están limitadas a 255 caracteres.
215	Dos o más nudos (o líneas) comparten el mismo identificativo ID.
216	Se han proporcionado datos energéticos para una bomba no definida.
217	Los datos energéticos asignados a una bomba no son válidos.
219	Se ha conectado ilegalmente una válvula a un depósito o a un embalse. Una Válvula Reductora, Sostenedora o Limitadora de Caudal no puede conectarse directamente a un depósito o embalse. Utilizar una tubería de corta longitud para separarlos.

220	Una válvula está conectada ilegalmente a otra válvula. Las Válvulas Reductoras no pueden compartir el mismo nudo aguas abajo o asociarse en serie; las Válvulas Sostenedoras no pueden compartir el nudo aguas arriba ni asociarse en serie; finalmente, una Válvula Sostenedora no puede conectarse directamente aguas abajo de una Válvula Reductora.
221	Una regla de control contiene una cláusula fuera de lugar.
222	Los dos extremos de una línea tienen el mismo identificativo ID
223	No hay suficientes nudos en la red para realizar un análisis. Para que una red sea válida debe contener como mínimo un depósito o embalse y un nudo de caudal.
224	No existe ningún depósito o embalse en la red.
225	Los niveles inferior o superior especificados para algún depósito no son válidos (p. ej. el nivel inferior es mayor que el nivel superior).
226	No se ha especificado la curva característica o la potencia nominal de una bomba. Una bomba debe tener definida necesariamente el ID de una curva característica en la propiedad <i>Curva Característica</i> o una potencia nominal en la propiedad <i>Potencia Nominal</i> . Si se especifican ambas propiedades, prevalece la Curva Característica.
227	Una bomba tiene asignada una curva característica no válida. Una curva válida debe presentar alturas decrecientes para caudales crecientes.
230	Las abcisas X de una curva no están definidas en orden creciente
233	Hay un nudo que no está conectado a ninguna tubería.
302	El sistema no puede abrir el fichero de datos de entrada temporal. Asegúrese de que el Directorio Temporal de EPANET, declarado en las Preferencias Generales, tiene privilegios de escritura. (ver Apartado 4.9)
303	El sistema no puede abrir el fichero de informe del estado. Ver el Error 302.
304	El sistema no puede abrir el fichero binario de salida. Ver el Error 302.
308	No se pueden guardar los resultados en un fichero. Ello puede deberse a que el disco está lleno.
309	No se pueden escribir los resultados en el fichero de informe. Ello puede deberse a que el disco está lleno.

C.1 Instrucciones Generales

EPANET puede ejecutarse también en modo comando desde una ventana DOS, como una aplicación de consola. Para ello hay que escribir los datos de la red en un fichero de texto, obteniéndose los resultados en otro fichero de texto. La instrucción para ejecutar la versión castellana de EPANET en modo comando presenta la siguientes sintaxis:

epanes2d ²¹ fich_ent fich_inf fich_sal

donde **fich_ent** es el nombre del fichero de entrada, **fich_inf** es el nombre del fichero de informe con los resultados, y **fich_sal** es el nombre de un fichero binario opcional, que almacena los resultados en un formato binario especial. Si este último fichero no es necesario, bastará con introducir los nombres de los dos primeros. Tal como está escrito el comando anterior, se supone que es lanzado desde el directorio en que reside EPANET, o bien que dicho directorio está incluido en la sentencia PATH del fichero AUTOEXEC.BAT. En otro caso, hay que introducir la ruta completa al especificar tanto el nombre del fichero ejecutable **epanes2d.exe** como los nombres de los ficheros que actúan como argumentos. Los mensajes de error emitidos cuando EPANET se ejecuta en modo comando son los mismos que cuando se ejecuta EPANET bajo Windows, y aparecen listados en el Apéndice B.

C.2 Formato del Fichero de Entrada

El fichero de entrada requerido para ejecutar EPANET en modo comando tiene el mismo formato que los ficheros de texto generados desde la versión Windows mediante la opción **Archivo** >> **Exportar** >> **Red...** Está organizado en secciones, cada una de las cuales comienza con una palabra clave encerrada entre corchetes. Las palabras claves de las distintas secciones del fichero se listan a continuación²².

Componentes	Operación del	Calidad del	Opciones e	Esquema de la Red /
de la Red	Sistema	Agua	Informes	Rótulos
[TITLE]	[CURVES]	[QUALITY]	[OPTIONS]	[COORDINATES]
[JUNCTIONS]	[PATTERNS]	[REACTIONS]	[TIMES]	[VERTICES]
[RESERVOIRS]	[ENERGY]	[SOURCES]	[REPORT]	[LABELS]
[TANKS]	[STATUS]	[MIXING]		[BACKDROP]
[PIPES]	[CONTROLS]			[TAGS]
[PUMPS]	[RULES]			
[VALVES]	[DEMANDS]			
[EMITTERS]				

²¹ La denominación del fichero ejecutable de EPANET en modo comando para la versión castellana (epanes2d.exe) se ha diferenciado de la correspondiente a la versión inglesa (epanet2d.exe), cuidando no sobrepasar el máximo de 8 caracteres por compatibilidad con las versiones más antiguas de DOS
²² Sa ha entrada provinción de la correspondiente a la versión inglesa (epanet2d.exe), cuidando no sobrepasar el máximo de 8 caracteres por compatibilidad con las versiones más antiguas de DOS

²² Se ha optado por mantener las palabras claves de las distintas secciones del fichero de entrada en inglés, así como las diferentes opciones incluidas en cada sección, por compatibilidad con la versión inglesa

El orden en que se escriban las distintas secciones en el fichero es irrelevante. La única consideración a tener en cuenta es que cuando en una sección se hace referencia a un nudo o línea, éste debe haber sido declarado anteriormente en alguna de las siguientes secciones: [JUNCTIONS], [RESERVOIRS], [TANKS], [PIPES], [PUMPS], o [VALVES]. Por ello, se recomienda ubicar estas secciones al comienzo del fichero, justo después de la sección [TITLE]. Las secciones correspondientes al *Esquema de la Red* y los *Rótulos* no son utilizadas durante la ejecución de EPANET en modo comando, de modo que pueden eliminarse del fichero.

Cada sección puede contener una o más líneas de datos. Es posible insertar líneas en blanco en cualquier lugar del fichero, y además se puede utilizar un punto y coma (;) para indicar que lo que viene a continuación es un comentario y no debe interpretarse como dato. El número máximo de caracteres que puede tener una línea es de 255. Los identificativos ID utilizados para identificar los nudos, líneas, curvas de comportamiento y curvas de modulación pueden contener cualquier combinación de números y letras, hasta un máximo de 15.

La Figura C.1 muestra el fichero de entrada correspondiente a la red utilizada en la guía rápida del Capítulo 2.

[TITLE]	
EPANET 2. Ejempio dei Tutoriai (SI)	
[JUNCTIONS]	
;ID Cota Demanda ;	
2 210 0	
3 215 10	
4 210 10 5 200 15	
6 210 10	
7 210 0	
[RESERVOIRS]	
;ID Emb Altura	
;	
[TANKS]	iám Volumon
;	
8 250 1 0 6	20 0
[PIPES]	
;ID Nudol Nudo2 Long Diám Rugosi	dad
1 2 3 1000 350 0.01	
2 3 7 1500 300 0.01	
3 3 4 1500 200 0.01	
5 6 7 1500 200 0.01	
6 7 8 2000 250 0.01	

Figura C.1 Ejemplo de *Fichero de Entrada* de EPANET (continúa en la página siguiente)


```
[PUMPS]
;ID Nudol Nudo2 Parámetros
;-----
9 1 2 HEAD 1
[PATTERNS]
;ID Multiplicadores
;------
1 0.5 1.3 1.0 1.2
[CURVES]
;ID Valor-X Valor-Y
;-----
1 42 45
[OUALITY]
;Nudo CalInic
;-----
1 1
[REACTIONS]
Global Bulk -1
Global Wall 0
[TIMES]
         72:00
Duration
Hydraulic Timestep 1:00
Quality Timestep 0:05
Pattern Timestep 6:00
[REPORT]
      0
Page
Status NO
Summary YES
Energy YES
Nodes ALL
Links
       ALL
[OPTIONS]
Units
Headloss
            LPS
D-W
1
Pattern
Quality
             Cloro mg/l
Tolerance 0.01
[END]
```

Figura C.1 Ejemplo de *Fichero de Entrada* de EPANET (viene de la página anterior)

En las páginas siguientes se muestra el contenido y las palabras claves de cada sección, listadas por orden alfabético²³.

²³ Para introducir cualquier valor numérico en el fichero de datos de entrada, se deberá utilizar el punto decimal (y no la coma) como separador entre la parte entera y la parte decimal (NdT)

[BACKDROP]

Propósito:

Identificar una imagen para ser utilizada como fondo del esquema de la red, y definir sus dimensiones.

Formatos:

DIMENSIONS	IIx IIy SDx SDy
UNITS	FEET/METERS/DEGREES/NON
FILE	nombre_fichero
OFFSET	X Y

Definiciones:

DIMENSIONS define las coordenadas X e Y de las esquinas Inferior Izquierda y Superior Derecha del rectángulo que delimita el mapa de fondo. Los valores por defecto son las coordenadas del rectángulo que enmarca a todos los nudos cuyas coordenadas figuran en la sección [COORDINATES].

UNITS especifica las unidades en que se expresan las dimensiones del esquema. La opción por defecto es NONE (ninguna).

FILE es el nombre del fichero que contiene el mapa de fondo.

OFFSET indica las distancias X e Y a que se encuentra desplazada la esquina superior izquierda del mapa de fondo respecto a la esquina superior izquierda del rectángulo que enmarca al esquema de la red. El valor por defecto es cero.

Notas:

- a. La sección [BACKDROP] es opcional, y no se utiliza cuando EPANET se ejecuta en modo comando.
- b. Sólo pueden utilizarse como fondo ficheros de mapa de bits (.bmp) y meta-ficheros mejorados de Windows (.emf).

[CONTROLS]

Propósito:

Definir las leyes de control simples, que permiten modificar el estado de las líneas en base a una condición única.

Formato:

Una línea por cada ley de control, cuyo formato debe ser uno de los siguientes:

LINK IDlínea estado IF NODE IDnudo ABOVE/BELOW valor
LINK IDlínea estado AT TIME tiempo
LINK IDlínea estado AT CLOCKTIME hora_real AM/PM

donde:

Idlínea	=	identificativo ID de una línea
estado	=	OPEN ó CLOSED, la velocidad de giro de una bomba, o la consigna de una válvula
Idnudo	=	identificativo ID de un nudo
valor	=	la presión en un nudo o el nivel en un depósito
tiempo	=	un instante dado, contado desde el comienzo de la simulación, expresado en horas o horas:minutos
Hora_real	=	la hora del día, expresada en horas:minutos y en el formato inglés (AM = de medianoche a mediodía, PM= de mediodía a medianoche)

Notas:

- a. Las leyes de control simple se utilizan para cambiar el estado de una línea o su consigna en base al nivel en un depósito, la presión en un nudo, la hora de la simulación o la hora del día en tiempo real.
- b. Ver las Notas de la sección [STATUS] sobre las convenciones utilizadas para especificar el estado de las líneas y sus consignas, en particular para las válvulas de control.

Ejemplos:

[CONTROLS] ;Cerrar la Línea 12 si el nivel del Depósito 23 excede de 5 metros LINK 12 CLOSED IF NODE 23 ABOVE 5

;Abrir la Línea 12 si la presión en el Nudo 130 está por debajo de 20 m LINK 12 OPEN IF NODE 130 BELOW 20

;La velocidad relativa de la bomba PUMP02 se fija en 1.5 veces la ;velocidad nominal, a las 16 horas de la simulación LINK PUMP02 1.5 AT TIME 16

;La línea 12 se cierra a las 10 AM y se abre a las 8 PM ;a lo largo de toda la simulación LINK 12 CLOSED AT CLOCKTIME 10 AM LINK 12 OPEN AT CLOCKTIME 8 PM

[COORDINATES]

Propósito:

Asignar a los nudos de la red sus correspondientes coordenadas en el esquema.

Formato:

Una línea para cada nudo, con la siguiente información:

- Identificativo ID del Nudo
- Coordenada X
- Coordenada Y

Notas:

- a. Incluir una línea por cada nudo del esquema.
- b. Las coordenadas representan la distancia del nudo a un origen de coordenadas arbitrario, situado en la parte inferior izquierda del esquema. Para expresar las distancias se puede utilizar cualquier unidad conveniente.
- c. No es requisito representar todos los nudos de la red en el esquema. Además, sus posiciones no tienen porqué corresponderse con ninguna escala real.
- d. La sección [COORDINATES] es opcional, y no se utiliza cuando EPANET se ejecuta en modo comando.

[COORDINATES]						
;Nudo	Coord Y					
; 1	10023	128				
2	10056	95				

[CURVES]

Propósito:

Declarar los identificativos de las curvas de comportamiento de algunos elementos de la red, y las parejas de puntos X,Y que las determinan.

Formato:

Una línea por cada punto X,Y de la curva, con la siguiente información:

- Identificativo ID de la curva
- Valor X (abcisa)
- Valor Y (ordenada)

Notas:

- a. Las curvas que pueden declararse en EPANET son las siguientes:
 - Altura frente a Caudal de una Bomba (Curva Característica)
 - Rendimiento frente a Caudal de una Bomba
 - Volumen frente a Nivel de un Depósito
 - Pérdida de Carga frente a Caudal de una Válvula
- b. Los puntos de una curva deben introducirse en orden creciente con respecto a los valores de X (de menor a mayor)
- c. Si el Fichero de Entrada va a ser leído desde la versión Windows de EPANET, se puede añadir una línea de comentario que contenga el tipo de curva y su descripción separados por dos puntos (:), justo antes de comenzar a introducir los valores X e Y de la curva. Ello hará que la curva se muestre correctamente en la ventana del Editor de Curvas de EPANET. Los tipos de curvas contemplados son PUMP (para la Curva de una Bomba), EFFICIENCY (para una Curva de Rendimiento), VOLUME (para una Curva de Cubicación), y HEADLOSS (para una Curva de Pérdidas de Carga). Ver el ejemplo siguiente.

Ejemplo:

[CURVES] ;ID Caudal Altura ;PUMP: Curva de la Bomba 1 70 C1 0 C1 50 35 C1 0 150 ;ID Caudal Rendim. ; EFFICIENCY: E120 50 85 E150 75 E1100 65 E1 150

[DEMANDS]

Propósito:

Complementar la sección [JUNCTIONS], para declarar múltiples tipos de demanda en los nudos de caudal.

Formato:

Una línea por cada tipo de demanda aplicable en un nudo, con la siguiente información:

- Identificativo ID del nudo de demanda
- Demanda base (en unidades de caudal)
- Identificativo ID de la curva de demanda (opcional)
- Descripción del tipo de demanda, precedido por un punto y coma (opcional)

Notas:

- a. Utilizar sólo para los nudos de caudal cuya demanda necesita ser modificada o complementada, respecto a la demanda introducida en la sección [JUNCTIONS].
- b. Los datos de esta sección reemplazan cualquier demanda introducida en la sección [JUNCTIONS] para el mismo nudo.
- c. No hay límite en cuanto al número de tipos de demanda que pueden introducirse por nudo.
- d. Si no se suministra ninguna curva de modulación de la demanda, las demandas en el nudo seguirán la Curva de Modulación por Defecto especificada en la sección [OPTIONS], o si ésta tampoco se hubiera declarado, la Curva de Modulación 1. Si la Curva de Modulación 1 tampoco estuviera definida, entonces se supondrá que la demanda permanece invariable.

Ejemplo:

[DEMANDS]

;ID	Demanda	Curva Mod.	Tipo demanda
J1	10	101	;Doméstica
J1 J256	2.5 5	102	;Colegio ;Doméstica

[EMITTERS]

Propósito:

Definir las características de los nudos de caudal, cuando se modelan como emisores (rociadores, hidrantes u orificios).

Formato:

Una línea por cada emisor, con la siguiente información:

- Identificativo ID del nudo de caudal al cual va asociado el emisor.
- Coeficiente de caudal, o lo que es lo mismo, caudal descargado (en unidades de caudal) para una caída de presión de 1 metro (1 psi)

Notas:

- a. Los emisores se utilizan para simular el caudal a través de un hidrante, un rociador, un aspersor de riego o una fuga.
- b. El caudal que sale por un emisor es igual al producto del coeficiente de caudal, por la presión en el nudo elevada a un exponente.
- c. El exponente puede fijarse mediante la instrucción EMITTER EXPONENT de la sección [OPTIONS]. El valor del exponente por defecto es 0.5, el cual se aplicable a rociadores y toberas.
- d. La demanda total en un nudo reportada por el programa es la suma de la demanda fijada en el nudo, más el caudal de descarga a través del emisor.
- e. La sección [EMITTERS] es opcional.

[ENERGY]

Propósito:

Definir los parámetros utilizados para calcular el consumo energético de las bombas y sus costes asociados.

Formatos:

GLOBAL		PRICE/PATTERN/EFFIC	valor
PUMP	IDBomba	PRICE/PATTERN/EFFIC	valor
DEMAND	CHARGE	valor	

Notas:

- a. Las líneas que comienzan con la palabra clave **GLOBAL** se utilizan para fijar los valores por defecto correspondientes al precio de la energía, a la curva de modulación de ésta y al rendimiento medio para todas las bombas del sistema.
- b. Las líneas que comienzan con la palabra clave **PUMP** se utilizan para sustituir, para determinadas bombas, los valores por defecto por otros específicos.
- c. El significado de los parámetros es el siguiente:
 - **PRICE** = coste medio del kWh,
 - **PATTERN** = Identificativo ID de la curva de modulación que describe la variación del precio de la energía con el tiempo,
 - **EFFIC** = el rendimiento global, expresado en tanto por cien, para todas las bombas si se trata del valor por defecto, o el identificativo ID de la curva de rendimiento si se trata de una bomba específica,
 - **DEMAND CHARGE** = coste adicional en función de la potencia punta utilizada durante el periodo de simulación, expresada ésta en kW.
- d. El valor por defecto del rendimiento global es del 75% y del precio medio de la energía 0 €kWh.
- e. Todas las instrucciones de esta sección son opcionales. Las palabras separadas por una barra inclinada (/) indican posibles opciones.

[ENERGY	ζ			
GLOBAL	PRIC	E	0.05	;Fija el precio medio de la energía en 0,05 ud/kWh
GLOBAL	PATT	ERN	MOD1	;y su curva de modulación en el tiempo como MOD1
PUMP	23	PRICE	0.10	;Reemplaza el precio medio de la energía de la
				;Bomba 23 por 0,1 ud/kWh
PUMP	23	EFFIC	E23	;Asigna E23 como curva de rendimiento de la Bomba 23

[JUNCTIONS]

Propósito:

Definir las características de los nudos de caudal de la red.

Formato:

Una línea por cada nudo de caudal, con la siguiente información:

- Identificativo ID
- Cota, en m (pies)
- Caudal de demanda base (en unidades de caudal) (opcional)
- Identificativo ID de la curva de modulación de la demanda (opcional)

Notas:

- a. La sección [JUNCTIONS] es obligatoria, y debe contener al menos un nudo de caudal.
- b. Si no se especifica una curva de modulación, la demanda en el nudo seguirá la Curva de Modulación por Defecto declarada en la sección [OPTIONS], o bien la Curva 1 si no se hubiera declarado ninguna por defecto. Si la Curva 1 tampoco estuviera definida, entonces la demanda se mantendría constante
- c. La demandas también pueden introducirse en la sección [DEMANDS], donde es posible asociar varios tipos de demanda a un nudo.

[JUNC	TIONS]			
;ID	Cota	Demanda	Patrón	
;				-
J1	100	50	Mod1	
J2	120	10		;Se aplica el patrón de demanda por defecto
J3	115			;Nudo sin demanda

[LABELS]

Propósito:

Identificar los rótulos del esquema y su posición, asignándoles unas coordenadas.

Formato:

Una línea por cada rótulo, con la siguiente información:

- Coordenada X
- Coordenada Y
- Texto del rótulo, entre comillas
- Identificativo ID del nudo de anclaje del rótulo (opcional)

Notas:

- a. Incluir una línea por cada rótulo del esquema.
- b. Las coordenadas corresponden a la esquina superior izquierda del rótulo, y están referidas a un origen arbitrario situado en la parte inferior izquierda del esquema.
- c. El nudo anclaje es opcional, y permite anclar el rótulo a un nudo del esquema durante las operaciones de re-escalado que siguen a las órdenes de acercar o alejar.
- d. La sección [LABELS] es opcional, y no se utiliza cuando EPANET se ejecuta en modo comando.

[LABELS]			
;Coord X	Coord Y	Etiqueta	Nudo Anclaje
;			
1230	3459	"Bomba 1"	
34.57	12.75	"Depósito Norte"	Т22

[MIXING]

Propósito:

Identificar el tipo de modelo que mezcla que gobernará las reacciones en los depósitos.

Formato:

Una línea por depósito, con la siguiente información:

- Identificativo ID del depósito
- Modelo de mezcla (MIXED, 2COMP, FIFO, o LIFO)
- Fracción de Mezcla (fracción del volumen total)

Notas:

- a. Entre los posibles modelos de mezcla se contemplan:
 - Mezcla completa (MIXED)
 - Mezcla en dos compartimentos (2COMP)
 - Flujo en pistón horizontal (FIFO)
 - Flujo en pistón vertical (LIFO)
- b. El parámetro relativo a la fracción de mezcla del compartimento se aplica sólo al modelo de dos compartimentos, y representa la fracción del volumen total del depósito reservado para el compartimento de entrada/salida.
- c. La sección [MIXING] es opcional. En los depósitos no declarados en esta sección se supone que la mezcla es completa.

Ejemplo:

[MIXING] ;Depósito Modelo Fracción ;-----T12 LIFO T23 2COMP 0.2

[OPTIONS]

Propósito:

Declarar las distintas opciones de simulación.

Formatos:

UNITS	CFS/GPM/MGD/IMGD/AFD/
	LPS/LPM/MLD/CMH/CMD
HEADLOSS	H-W/D-W/C-M
HYDRAULICS	USE/SAVE nombre_fichero
QUALITY	NONE/CHEMICAL/AGE/TRACE id
VISCOSITY	valor
DIFFUSIVITY	valor
SPECIFIC GRAVITY	valor
TRIALS	valor
ACCURACY	valor
UNBALANCED	STOP/CONTINUE/CONTINUE n
PATTERN	ID
DEMAND MULTIPLIER	valor
EMITTER EXPONENT	valor
TOLERANCE	valor
MAP	nombre_fichero

Definiciones:

UNITS establece las unidades en que se expresarán los caudales. Las opciones son:

CFS	=	pies cúbicos por segundo
GPM	=	galones por minuto (US)
MGD	=	millones de galones por minuto (US)
IMGD	=	MGD Imperiales (UK)
AFD	=	acres-pies por día
LPS	=	litros por segundo
LPM	=	litros por minuto
MLD	=	millones de litros por día
CMH	=	metros cúbicos por hora
CMD	=	metros cúbicos por día

Para las opciones **CFS**, **GPM**, **MGD**, **IMGD**, **y AFD** las restantes magnitudes se expresarán en unidades convencionales US. Si las unidades del caudal son **LPS**, **LPM**, **MLD**, **CMH ó CMD**, el resto de las magnitudes se expresarán en Unidades Métricas (SI) (Ver el apéndice A, Unidades de Medida). Las unidades de caudal por defecto son **GPM²⁴**.

²⁴ En el Fichero de Entrada se ha preferido mantener por defecto los gpm en lugar de l/s, para las unidades del caudal, por compatibilidad con los ficheros de datos preparados para ser ejecutados con la versión inglesa

HEADLOSS selecciona una fórmula para calcular las pérdidas de carga a través de una tubería. Las fórmulas admitidas son Hazen-Williams (H–W), Darcy-Weisbach (D–W), o Chezy-Manning (C–M). Por defecto se supone H–W

La opción **HYDRAULICS** permite, o bien guardar (**SAVE**) la solución hidráulica actual en un fichero, o bien utilizar (**USE**) una solución hidráulica previamente almacenada. Ello resulta útil cuando se están estudiando tan solo los factores que afectan al comportamiento de la calidad del agua.

QUALITY selecciona el tipo de análisis de calidad a realizar. Las opciones son **NONE** (ninguno), **CHEMICAL** (una sustancia química), **AGE** (tiempo de permanencia), y **TRACE** (procedencia). En lugar de **CHEMICAL** se puede escribir el nombre real de la sustancia a considerar, seguido por las unidades de concentración a emplear (p.ej., **CLORO mg/l**). Si se selecciona la opción **TRACE**, ésta deberá ir seguida por el identificativo ID del nudo del procedencia. La opción por defecto es **NONE** (no realizar ningún análisis de calidad).

VISCOSITY es la viscosidad cinemática del fluido que circula por la red, referida a la del agua a 20°C (1.0 centistoke). El valor por defecto es 1.0

DIFFUSIVITY es el coeficiente de difusión molecular de las sustancia química cuyo comportamiento se está analizando, referido al coeficiente de difusión del cloro en agua. El valor por defecto es 1.0. El coeficiente de difusión se utiliza solamente cuando se consideran limitaciones en la transferencia de masa para las reacciones con la pared de las tuberías. Si se introduce un valor 0, EPANET ignorará las limitaciones de transferencia de masa

SPECIFIC GRAVITY es el cociente entre la densidad del fluido que circula por la red y la del agua a 4° C (sin unidades). El valor por defecto es 1.0

TRIALS es el número máximo de iteraciones permitido para resolver las ecuaciones de equilibrio hidráulico en cada intervalo de cálculo. El valor por defecto es 40.

ACCURACY es la tolerancia que determina cuándo el proceso ha convergido, y se ha alcanzado por tanto una solución hidráulica válida. Las iteraciones terminan cuando la suma de las variaciones de caudal habidas con respecto a la solución anterior, dividida por el caudal total que circula por todas las líneas, es menor que la tolerancia. El valor por defecto es 0.001.

UNBALANCED determina qué hacer cuando no se puede alcanzar una solución de equilibrio hidráulico dentro del número máximo de iteraciones indicado en la opción **TRIALS**, en algún momento de la simulación. La opción "STOP" detiene la simulación en dicho punto; la opción "CONTINUE" indica que se continúe el análisis, emitiendo un mensaje de advertencia. Finalmente, la opción "CONTINUE n" indica que continúe buscando la solución durante "n" iteraciones adicionales, manteniendo fijo el estado actual de todas las líneas. La simulación continuará en cualquier caso a partir de este punto, indicando en un mensaje si la convergencia ha sido conseguida o no. La opción por defecto es "STOP".

PATTERN establece el identificativo ID de la curva de modulación por defecto a aplicar a todos los nudos de demanda que no posean una curva de modulación definida. Si dicha curva no está declarada en la sección [PATTERNS], entonces la curva de modulación por defecto consistirá en un multiplicador único, de valor 1.0. Si no se utiliza esta opción, la curva de modulación por defecto tendrá como identificativo el "1".

La opción **DEMAND MULTIPLIER** se utiliza para ajustar el valor de la demanda base de todos los nudos, y para todos los tipos de demanda. Por ejemplo, un valor 2 significa duplicar todas las demandas base, mientras que un valor 0.5 significa reducirlas a la mitad. El valor por defecto 1.0.

EMITTER EXPONENT fija el exponente al cual hay que elevar el valor de la presión en un nudo para determinar el caudal de descarga en el emisor asociado. El valor por defecto es 0.5

TOLERANCE es la diferencia permitida en el valor de la calidad del agua, al objeto de determinar si la calidad de una porción de agua es equivalente a la de otra contigua o no. El valor por defecto es 0.01 para todos los tipos de análisis de calidad: concentración de una sustancia química, tiempo de permanencia (medido en horas), o procedencia (medida en tanto por cien).

MAP se utiliza para proporcionar el nombre de un fichero con las coordenadas de los nudos de la red, al objeto de representar el esquema de ésta. No se utiliza durante los cálculos de una simulación hidráulica o de un análisis de calidad.

Notas:

- a. Todas la opciones asumen sus valores por defecto, si no se especifican en esta sección.
- b. Las palabras clave separadas por una barra inclinada (/) indican posibles alternativas.

Ejemplo:

[OPTIONS] UNITS CFS HEADLOSS D-W QUALITY TRACE Tank23 UNBALANCED CONTINUE 10

[PATTERNS]

Propósito:

Definir las diferentes curvas de modulación en el tiempo (o patrones), aplicables a demandas, alturas de embalse, curvas de velocidad de las bombas, precios de la energía, e intensidad de una fuente contaminante.

Formato:

Una o más líneas por cada curva patrón, con la siguiente información:

- Identificativo ID de la curva patrón
- Uno o más multiplicadores, secuenciados en el tiempo

Notas:

- a. Un multiplicador es un factor que multiplica a cierto valor base (p. ej. una demanda), para determinar el valor real correspondiente a cada instante de la simulación.
- b. Todas las curvas de modulación comparten el mismo intervalo de tiempo, el cual es definido en la sección [TIMES].
- c. Cada curva de modulación puede contener un número diferente de periodos de tiempo.
- d. Cuando el tiempo de simulación excede al periodo abarcado por la curva de modulación, ésta se repite comenzando por el primer periodo.
- e. Se pueden utilizar cuantas líneas sean necesarias para definir la totalidad de multiplicadores que componen una curva de modulación.

[PAT	TERNS]			
;Cur	va modu	ılaciór	n Ml	
M1	1.1	1.4	0.9	0.7
M1	0.6	0.5	0.8	1.0
;Cur	va modu	ılaciór	n M2	
М2	1	1	1	1
М2	0	0	1	

[PIPES]

Propósito:

Definir las características de todas las tuberías existentes en la red.

Formato:

Una línea por cada tubería, con la siguiente información:

- Identificativo ID de la tubería
- Identificativo ID del nudo inicial
- Identificativo ID del nudo final
- Longitud, en m (pies)
- Diámetro, en mm (pulgadas)
- Coeficiente de Rugosidad
- Coeficiente de Pérdidas Menores
- Estado (OPEN, CLOSED, ó CV)

Notas:

- a. El coeficiente de rugosidad no tiene dimensiones para las fórmulas de pérdidas de Hazen-Williams y Chezy-Manning, mientras que para la fórmula de Darcy-Weisbach sus unidades son mm (milipiés). La elección de la fórmula de pérdidas se realiza en la sección [OPTIONS].
- b. Si se declara el estado de una tubería como CV, se entiende que la tubería posee una válvula de retención que impide el flujo inverso.
- c. Si el coeficiente de pérdidas menores es 0 y la tubería está OPEN (abierta), estos dos parámetros pueden omitirse de la línea de datos.

[PIPE	IS]						
;ID 	Nudo1	Nudo2	Longitud	Diám.	Rugosidad	PerdMen	Estado
, P1	J1	J2	400	300	0.010	0.2	OPEN
P2	J3	J2	200	150	0.015	0	CV
P3	J1	J10	400	300	0.010		

[PUMPS]

Propósito:

Definir las características de todas las bombas existentes en la red.

Formato:

Una línea por cada bomba, con la siguiente información:

- Identificativo ID de la bomba
- Identificativo ID del nudo de aspiración
- Identificativo ID del nudo de impulsión
- Palabra clave y valor correspondiente (pueden ser varias)

Notas:

- a. Las palabras claves admitidas son:
 - **POWER** Potencia nominal para una bomba que trabaja a potencia constante, en kW (hp)
 - **HEAD** Identificativo ID de la curva característica de la bomba (altura frente a caudal)
 - **SPEED** Consigna de velocidad relativa (un 1 corresponde a la velocidad nominal; un 0 significa que está parada)
 - **PATTERN** Identificativo ID de la curva de modulación que describe cómo varía la velocidad con el tiempo
- b. Para todas las bombas debe proporcionarse la clave **POWER** ó la clave **HEAD**. Las otra claves son opcionales.

[PUMPS]			
;ID	Nudo1	Nudo2	Propiedades	
;				
Pump1	N12	N32	HEAD Curval	
Pump2	N121	N55	HEAD Curval	SPEED 1.2
Pump3	N22	N23	POWER 100	

[QUALITY]

Propósito:

Definir la calidad inicial del agua en todos los nudos.

Formato:

Una línea por cada nudo, con la siguiente información:

- Identificativo ID del Nudo
- Calidad inicial

Notas:

- a. La calidad inicial se supone cero para todos los nudos no listados en esta sección
- b. La calidad del agua puede interpretarse como la concentración de una sustancia química, las horas de permanencia del agua en la red, o el porcentaje del agua que llega a un nudo procedente de otro nudo.
- c. La sección [QUALITY] es opcional.

[REACTIONS]

Propósito:

Definir los parámetros relacionados con las reacciones químicas que ocurren en el interior de la red

Formatos:

ORDER BULK/WALL/TANKvalorGLOBAL BULK/WALLvalorBULK/WALL/TANKIDtub/IDdepós valorLIMITING POTENTIALvalorROUGHNESS CORRELATIONvalor

Definiciones:

ORDER es utilizado para fijar el orden de las reacciones que ocurren en el seno del fluido, en las paredes de las tuberías, o en los depósitos respectivamente. El orden de las reacciones con la pared puede ser $0 \circ 1$. Si no se introduce este parámetro, se supone que el orden de la reacción por defecto es 1.0.

GLOBAL es utilizado para especificar un valor global de los coeficientes de reacción en el medio (tuberías y depósitos) y/o en la pared, para todas las tuberías. El valor por defecto es cero

BULK, **WALL**, y **TANK** se utilizan para sustituir los valores globales de los coeficiente de reacción por valores específicos para determinadas tuberías o depósitos

LIMITING POTENTIAL especifica que los coeficientes de reacción en las paredes van a ser proporcionales a la diferencia entre la concentración actual y el potencial límite indicado.

ROUGHNESS CORRELATION hace que los coeficientes de reacción en las paredes de todas las tuberías están relacionados con la rugosidad de las mismas del siguiente modo

Ecuación de Pérdidas	Correlación con la Rugosidad
Hazen-Williams	F / C
Darcy-Weisbach	F / log (e/D)
Chezy-Manning	F*n

donde F es el coeficiente de correlación entre la rugosidad y la velocidad de reacción, C es el coeficiente C de Hazen-Williams, e la rugosidad de Darcy-Weisbach, D el diámetro de la tubería, y n el coeficiente de rugosidad de Chezy-Manning. Los valores por defecto calculados de este modo pueden ser reemplazados para algunas tuberías en particular por otro valor mediante la instrucción **WALL**.

Notas:

- a. Recordar que hay que utilizar coeficientes positivos para las reacciones de crecimiento, y coeficientes negativos para las reacciones de decrecimiento.
- b. Las unidades de tiempo para todos los coeficientes de reacción son 1/día.
- c. Todas las instrucciones de esta sección son optativas. Las palabras separadas por una barra inclinada (/) indican opciones alternativas.

[REACTIO	ONS]		
ORDER WA	ALL	0	;La reacción en la pared es de orden cero
GLOBAL H	BULK	-0.5	;Coeficiente de reacción global en el medio
GLOBAL V	WALL	-1.0	;Coeficiente de reacción global en la pared
WALL I	P220	-0.5	;Coeficientes de reacción en la pared para
WALL I	P244	-0.7	;algunas tuberías concretas

[REPORT]

Propósito:

Configurar el contenido del fichero de resultados generado tras una simulación.

Formatos:

PAGESIZE	valor
FILE	nombre_fichero
STATUS	YES/NO/FULL
SUMMARY	YES/NO
ENERGY	YES/NO
NODES	NONE/ALL/nudo1 nudo2
LINKS	NONE/ALL/línea1 línea2
parámetro	YES/NO
parámetro	BELOW/ABOVE/PRECISION valor

Definiciones:

PAGESIZE determina el número de líneas escritas por página del fichero de informe. El valor por defecto es 0, lo que significa que no hay límite de líneas por página.

FILE es el nombre del fichero donde se escribirá el informe de resultados (es ignorado en la versión Windows de EPANET).

STATUS determina si va a reportar o no en el informe el estado de los distintos componentes de la red. Si se elige la opción **YES**, en el informe se reportarán todos los componentes de la red que han cambiado su estado en cada intervalo de cálculo de la simulación. Si se elige **FULL** en el informe de estado se incluirá también toda la información referente al número de iteraciones y convergencia final obtenida para cada instante de cálculo. Tal nivel de detalle es útil sólo para depurar la información en las redes en que no pueda alcanzarse el equilibrio hidráulico. La opción por defecto es **NO**.

SUMMARY determina si se reportará o no en el informe una tabla resumen, con el número de componentes de cada tipo en la red y las opciones de cálculo elegidas. El valor por defecto es **YES**.

ENERGY determina si se reportará o no en el informe una tabla con el consumo medio energético para cada bomba, y el coste asociado. El valor por defecto es **NO**.

NODES especifica los nudos que van a ser reportados en el informe. Se pueden listar individualmente los ID de los nudos deseados, o utilizar las palabras claves **NONE** (ninguno) ó **ALL** (todos). Se pueden utilizar líneas adicionales, comenzando con la palabra **NODES**, para ampliar la lista de nudos a reportar. La opción por defecto es **NONE**.

LINKS especifica las líneas del modelo que van a ser reportadas en el informe. Se pueden listar individualmente los ID de las líneas deseadas, o utilizar las palabras claves **NONE** (ninguno) ó **ALL** (todos). Se pueden utilizar líneas adicionales, comenzando con la palabra **LINKS**, para ampliar la lista de líneas del modelo a reportar. La opción por defecto es **NONE**.

La opción "parámetro" se utiliza para identificar las magnitudes a reportar, el número de decimales a mostrar para cada magnitud, y el tipo de filtro a aplicar para limitar el volumen de los resultados. Las magnitudes asociadas a los Nudos que pueden reportarse son:

- Elevation (cota)
- **Demand** (demanda)
- Head (altura piezométrica)
- **Pressure** (presión)
- **Quality** (calidad)

Las magnitudes asociadas a las Líneas que pueden reportarse son:

- Length (longitud)
- Diameter (diámetro)
- Flow (caudal)
- Velocity (velocidad)
- Headloss (pérdida unitaria)
- LinkQuality (calidad media en la línea)
- **State** (estado de la línea: abierta, activa o cerrada)
- Setting (rugosidad para las tuberías, velocidad para las bombas, consigna de presión/caudal para la válvulas)
- **Reaction** (velocidad de reacción)
- **F-Factor** (factor de fricción).

Las magnitudes reportadas por defecto para los nudos son **Demand**, **Head**, **Pressure**, y **Quality**, y para las líneas **Flow**, **Velocity**, y **Headloss**. La precisión utilizada por defecto para todas ellas son dos decimales.

Notas:

- a. Todas las opciones asumen sus valores por defecto, si no se especifican en esta sección.
- b. Las palabras separadas por una barra inclinada (/) indican alternativas posibles.
- c. La opción por defecto es no reportar ningún nudo y ninguna línea, de modo que deben utilizarse las instrucciones **NODES** o **LINKS** si se quiere reportar alguna información de los mismos.
- d. En la versión Windows de EPANET, la única opción reconocida de la sección [REPORT] es **STATUS**. Todas las demás serán ignoradas.

Ejemplo:

En el siguiente ejemplo se especifica que hay que reportar en el informe los nudos N1, N2, N3, y N17, así como todas las líneas cuya velocidad sea mayor de 2,0 m/s. Para los nudos se reportarán las magnitudes estándar (Demanda, Altura, Presión y Calidad), mientras que para las líneas se reportarán solo el Caudal, la Velocidad y el Factor de Fricción (F-Factor).

[REPORT] NODES N1 N2 N3 N17 LINKS ALL FLOW YES VELOCITY PRECISION 4 F-FACTOR PRECISION 4 VELOCITY ABOVE 2.0

[RESERVOIRS]

Propósito:

Definir las características de todos los embalses existentes en la red

Formato:

Una línea por cada embalse, con la siguiente información:

- Identificativo ID
- Altura, en m (pies)
- Identificativo ID de la Curva de Modulación de la Altura (opcional)

Notas:

- a. La Altura hace referencia a la altura piezométrica en el embalse (cota + altura de presión).
- b. Se puede emplear una curva de modulación para hacer variar la altura con el tiempo.
- c. En la red debe haber como mínimo un embalse o un depósito.

Ejemplo:

[RESERVOIRS]
;ID Altura Modulac.
;-----R1 52 ; la altura permanece constante
R2 75 Mod1 ; la altura varía con el tiempo

[RULES]

Propósito:

Definir las leyes de control basadas en reglas, que permiten modifican el estado o la consigna de las líneas en base a un conjunto de condiciones simultáneas.

Formato:

Cada regla consiste en una serie de instrucciones del tipo:

```
RULE IDregla
IF condición_1
AND condición_2
OR condición_3
AND condición_4
etc.
THEN acción_1
AND acción_2
etc.
ELSE acción_3
AND acción_4
etc.
PRIORITY prioridad
```

```
donde:
```

IDregla	=	un identificativo ID asignado a la regla
condición_n	=	una cláusula de condición
Acción_n	=	una cláusula de acción
prioridad	=	un orden de prioridad (p.ej. un número del 1 al 5)

Formato de las Cláusulas de Condición:

Una cláusula de condición de un Ley de Control basada en Reglas presenta la siguiente sintaxis:

```
objeto ID atributo relación valor
```

```
donde
```

objeto	=	un tipo de objeto de la red
ID	=	el identificativo ID del objeto
atributo	=	un atributo o propiedad del objeto
relación	=	un operador relacional
valor	=	el valor de un atributo

A continuación de muestran algunos ejemplos de cláusulas de condición:

```
JUNCTION 23 PRESSURE > 20
TANK T200 FILLTIME BELOW 3.5
```



```
LINK 44 STATUS IS OPEN
SYSTEM DEMAND >= 1500
SYSTEM CLOCKTIME = 7:30 AM
```

Los tipos de objetos contemplados deben ser alguno de los siguientes:

NODE	LINK
JUNCTION	PIPE
RESERVOIR	PUMP
TANK	VALVE

Cuando se utiliza el objeto SYSTEM no hay que proporcionar ningún identificativo ID.

SYSTEM

Los siguientes atributos pueden aplicarse a los objetos tipo Nudo:

DEMAND HEAD

PRESSURE

Los siguientes atributos pueden aplicarse a los objetos tipo Depósito:

LEVEL

FILLTIME (horas requeridas para llenar un depósito)

DRAINTIME (horas requeridas para vaciar un depósito)

Los siguientes atributos pueden aplicarse a los objetos tipo Línea:

FLOW

STATUS (OPEN, CLOSED, O ACTIVE)

SETTING (velocidad de una bomba, o consigna de una válvula)

Los siguientes atributos pueden aplicarse al objeto tipo SYSTEM :

DEMAND (demanda total del sistema)

TIME (tiempo en horas desde el comienzo de la simulación , expresado como hora decimal o con el formato horas:minutos)

CLOCKTIME (hora real del día, seguida del sufijo AM ó PM)

Los operadores relacionales deben ser alguno de los siguientes:

=	IS
<>	NOT
<	BELOW
>	ABOVE
<=	>=

Formato de las Cláusulas de Acción:

Una cláusula de acción de una Ley de Control basada en Reglas presenta la siguiente sintaxis:

objeto ID STATUS/SETTING IS valor

donde

objeto	=	la palabra clave LINK, PIPE, PUMP, ó VALVE
ID	=	el identificativo ID del objeto
valor	=	una condición de estado (OPEN ó CLOSED), la velocidad de una bomba, o la consigna de una válvula

A continuación se muestran algunos ejemplos de cláusulas de acción:

LINK 23 STATUS IS CLOSED PUMP P100 SETTING IS 1.5 VALVE 123 SETTING IS 90

Notas:

- a. Sólo las instrucciones **RULE**, **IF** y **THEN** de una ley de control son requeridas estrictamente; las otras partes son opcionales.
- b. Cuando se mezclan las cláusulas AND y OR, el operador OR tiene precedencia sobre el operador AND. Por ejemplo,

IF A or B and C

es equivalente a

IF (A or B) and C

Si en realidad lo que se quería decir es

IF A or (B and C)

habrá que utilizar para ello las dos reglas siguientes

IF A THEN ...

IF B and C THEN ...

c. El orden estipulado en la cláusula **PRIORITY** se utiliza para determinar qué regla es aplicable cuando dos o más acciones sobre una misma línea entran en conflicto. Una regla que no tenga una prioridad especificada siempre tendrá menor prioridad que otra que sí que la tenga. Para dos reglas con la misma prioridad, prima la que aparece en primer lugar dentro de la sección.

```
[RULES]
RULE 1
     TANK
тг
            1 LEVEL ABOVE 4.8
THEN PUMP 335 STATUS IS CLOSED
AND PIPE 330 STATUS IS OPEN
RULE 2
IF
     SYSTEM CLOCKTIME >= 8 AM
AND SYSTEM CLOCKTIME < 6 PM
AND TANK 1 LEVEL BELOW 1.2
THEN PUMP 335 STATUS IS OPEN
RULE 3
IF
    SYSTEM CLOCKTIME >= 6 PM
OR
     SYSTEM CLOCKTIME < 8 AM
AND TANK 1 LEVEL BELOW 1.4
THEN PUMP 335 STATUS IS OPEN
```


[SOURCES]

Propósito:

Declarar la ubicación de las fuentes de inyección de una sustancia y sus propiedades.

Formato:

Una línea por cada fuente de inyección, con la siguiente información:

- Identificativo ID del nudo
- Tipo de fuente (CONCEN, MASS, SETPOINT, o FLOWPACED)
- Intensidad base de la fuente
- Identificativo ID de la curva de modulación de la intensidad de la fuente (opcional)

Notas:

- a. Para el tipo de fuente **MASS**, la intensidad se mide en caudal másico por minuto. En todos los demás tipos de fuentes, la intensidad se mide en unidades de concentración.
- b. La intensidad de la fuente puede hacerse variar con el tiempo, especificando el identificativo de una curva de modulación.
- c. Una fuente de tipo CONCEN (Concentración):
 - especifica la concentración de cualquier caudal externo que entre por el nudo
 - se aplica únicamente a los nudos que presentan una demanda neta negativa (esto es, a nudos por los que entra el agua en la red)
 - si el nudo es de caudal, la concentración resultante en el nudo será el producto de mezclar el flujo externo entrante al mismo, con el aporte al nudo desde otros nudos de la red
 - si el nudo es un embalse, la concentración mostrada en los resultados para dicho nudo será igual a la concentración de la fuente
 - si el nudo es un depósito, la concentración mostrada en los resultados se corresponderá con la concentración interna del depósito.
 - este tipo de fuente se utiliza fundamentalmente para nudos que representan un punto de suministro de agua o una planta de tratamiento (modelados como embalses o nudos de demanda negativa)
 - no debe utilizarse para depósitos de cabecera con entrada y salida simultánea del flujo.
- d. Una fuente de tipo MASS, SETPOINT, Ó FLOWPACED:
 - representa una fuente de inyección de una determinada sustancia, la cual se introduce directamente a la red con independencia de la demanda en el nudo
 - afecta básicamente a la calidad del agua abandona el nudo de inyección, con dirección a otros nudos de la red. En función del tipo de fuente cabe realizar las siguientes matizaciones:
 - una reinyección de tipo **MASS** (Caudal Másico) añade un caudal másico determinado de sustancia al caudal resultante de la mezcla de todos los flujos que llegan al nudo
 - una reinyección de tipo **SETPOINT** (**Reinyección a Punto Fijo**) fija en un valor determinado la concentración de cualquier flujo que abandona el nudo (siempre y cuando la concentración que resulte de la mezcla de los flujos que llegan al nudo sea menor que la concentración de consigna)
 - una reinyección **FLOWPACED** (**Reinyección incremental**) incrementa la concentración en el nudo, resultante de la mezcla de todos los flujos que llegan a él, en una cantidad determinada.

- la concentración mostrada en los resultados para una fuente de este tipo en un nudo o en un embalse, es la que resulta tras la reinyección de la sustancia; la concentración mostrada en los resultados para un depósito con una fuente de este tipo, es la concentración interna del depósito
- este tipo de fuentes se adaptan mejor para modelar la inyección directa en la red de un trazador o un desinfectante, o para modelar la intrusión de un contaminante.
- e. La sección [SOURCES] no es requerida para llevar a cabo la simulación del tiempo de permanencia del agua en la red o un análisis de procedencias.

Ejemplo:

[SOURCES] ;Nudo Tipo Intensidad Modulac. ;------N1 CONCEN 1.2 Mod1 ;La concentración varía con el tiempo N44 MASS 12 ;El caudal másico de inyección es constante

[STATUS]

Propósito:

Definir el estado inicial de determinadas líneas, al comienzo de la simulación.

Formato:

Una línea por cada línea del modelo controlada, conteniendo la siguiente información:

- Identificativo ID de la línea
- Estado o consigna

Notas:

- a. El estado por defecto de las líneas no listadas en esta sección es OPEN (abierto para tuberías y bombas) ó ACTIVE (activo para válvulas).
- b. Las opciones para el estado de un componente son OPEN (abierto) ó CLOSED (cerrado). Para las válvula de control (p.ej. Válvulas Reductoras o Limitadoras de Caudal) ello significa que se encuentran totalmente abiertas o cerradas, y por consiguiente no actúan conforme a su consigna.
- c. El valor de la consigna puede ser la velocidad de giro para una bomba o la consigna propiamente dicha para una válvula.
- d. El estado inicial de las tuberías puede fijarse también en la sección [PIPES].
- e. Las válvulas de retención no admiten fijar su estado inicial.
- f. Utilizar las secciones [CONTROLS] ó [RULES] para cambiar el estado o la consigna de un elemento en algún momento posterior de la simulación.
- g. Si una válvula cuyo estado es CLOSED ó OPEN se fija de nuevo como ACTIVE, su presión o caudal de consigna debe especificarse en la ley de control o la regla que la reactiva.

Ejemplo:

[STATUS]

; Línea	Estado/Cons	signa
L22	CLOSED	;La línea L22 está inicialmente cerrada
P14	1.5	;La velocidad de giro de la bomba P14 se fija
		;inicialmente en 1,5 su velocidad nominal
PRV1	OPEN	;La válvula PRV1 está forzosamente abierta
		;(en lugar de operar normalmente)

[TAGS]

Propósito:

Asociar etiquetas a los nudos y líneas, para permitir su clasificación.

Formato:

Una línea por cada nudo o línea que lleve asociada una etiqueta, con la siguiente información:

- la palabra clave NODE Ó LINK
- el identificativo ID del nudo o línea
- el texto de la etiqueta (sin espacios)

Notas:

- a. Las etiquetas son útiles para agrupar los nudos pertenecientes a diferentes zonas de presión de la red, o para clasificar las tuberías por su material o edad.
- b. Si la etiqueta de un nudo o línea no está declarada en esta sección, se supone que ésta es un blanco.
- c. La sección [TAGS] es opcional, y no tiene ningún efecto sobre los cálculos hidráulicos o de calidad del agua.

[TAGS]		
;Objeto	ID	Etiqueta
;		
NODE	1001	Zona_A
NODE	1002	Zona_A
NODE	45	Zona_B
LINK	201	UNCI-1960
LINK	202	PVC-1985

[TANKS]

Propósito:

Definir todos los depósitos existentes en la red.

Formato:

Una línea por cada depósito, con la siguiente información:

- Identificativo ID
- Cota de Solera, en m (pies)
- Nivel Inicial del agua, en m (pies)
- Nivel Mínimo del agua, en m (pies)
- Nivel Máximo del agua, en m (pies)
- Diámetro Nominal, en m (pies)
- Volumen Mínimo, en metros cúbicos (pies cúbicos)
- Identificativo ID de la Curva de Cubicación (opcional)

Notas:

- a. La Altura de la superficie libre del agua en un depósito es igual a la suma del nivel más la cota de solera.
- b. Los depósitos no cilíndricos pueden modelarse especificando una curva de cubicación en la sección [CURVES], que relacione el volumen almacenado con el nivel del agua.
- c. Si se proporciona una curva de cubicación, el diámetro puede tomar cualquier valor no nulo
- d. El volumen mínimo (volumen del depósito correspondiente al nivel mínimo) puede ser cero para un depósito cilíndrico. Si se especifica una curva de cubicación, queda definido por ésta.
- e. Una red debe contener al menos un depósito o un embalse.

Ejemplo:

[TANKS] ;ID Cota NivInic NivMin NivMax Diam VolMin CurvaCub ;------;Depósito cilíndrico 0.5 1.5 5.0 т1 100 60 0 ;Depósito no cilíndrico de diámetro variable т2 100 1.5 0.5 5.0 15 0 VC1

[TIMES]

Propósito:

Definir los distintos parámetros relacionados con el tiempo, que controlan el desarrollo de la simulación.

Formatos:

	MINIMUM/MAXIMUM RANGE
STATISTIC	NONE / AVERAGE /
START CLOCKTIME	Valor (AM/PM)
REPORT START	Valor (unidades)
REPORT TIMESTEP	Valor (unidades)
PATTERN START	Valor (unidades)
PATTERN TIMESTEP	Valor (unidades)
RULE TIMESTEP	Valor (unidades)
QUALITY TIMESTEP	Valor (unidades)
HYDRAULIC TIMESTEP	Valor (unidades)
DURATION	Valor (unidades)

Definiciones:

DURATION es la duración total de la simulación. Un valor 0 significa ejecutar un régimen permanente o calcular tan solo el instante actual. El valor por defecto es 0.

HYDRAULIC TIMESTEP establece el intervalo de tiempo entre dos instantes de cálculo consecutivos. Si es mayor que el intervalo especificado en los epígrafes **PATTERN** o **REPORT**, se reducirá automáticamente para igualarse con el menor de ellos. El valor por defecto es 1 hora.

QUALITY TIMESTEP es el intervalo de tiempo utilizado para realizar el seguimiento de los cambios que afectan a la calidad del agua en la red, a lo largo de una simulación. El valor por defecto es 1/10 del intervalo entre dos instantes de cálculo.

RULE TIMESTEP es el intervalo de tiempo utilizado para evaluar la leyes de control basadas en reglas. Si se especifica debe ser una fracción del intervalo de cálculo hidráulico. El valor por defecto es 1/10 del intervalo de cálculo.

PATTERN TIMESTEP es el intervalo de tiempo entre dos periodos consecutivos de una curva de modulación, y se considera el mismo para todas ellas. El valor por defecto es 1 hora.

PATTERN START determina el periodo de tiempo inhábil, a partir del cual comenzarán a aplicarse las curvas de modulación. Por ejemplo, un valor de 6 horas significa que la simulación arrancará con los factores de la curva de modulación correspondientes a la hora 6. El valor por defecto es 0.

REPORT TIMESTEP establece el intervalo de tiempo con que se mostrarán los resultados. El valor por defecto es 1 hora.

REPORT START es la hora de la simulación, a partir de la cual comenzarán a presentarse los resultados. El valor por defecto es 0.

START CLOCKTIME es la hora del día que se corresponde con el comienzo de la simulación (p.ej. 3:00 PM). El valor por defecto son las 12:00 AM, esto es, medianoche.

STATISTIC determina qué tipo de post-procesamiento estadístico debe efectuarse sobre las series de datos temporales obtenidos durante la simulación. La opción **AVERAGE** reporta los resultados promediados en el tiempo; la opción **MINIMUM** reporta sólo los valores mínimos; la opción **MAXIMUM** reporta los valores máximos; y la opción **RANGE** reporta la diferencia entre los valores máximos y mínimos. Finalmente, la opción **NONE** no realiza ningún post-procesamiento de los resultados, de modo que éstos se reportan completos para todos los instantes, todos los nudos y líneas, y todas las magnitudes asociadas. Es la opción por defecto.

Notas:

- a. La unidades empleadas para expresar cualquiera de los parámetros temporales pueden ser SECONDS ó SEC (segundos), MINUTES ó MIN (minutos), HOURS (horas), ó DAYS (días). La opción por defecto es HOURS.
- b. Si no se indican las unidades, los valores del tiempo pueden introducirse como horas decimales o bien en notación horas:minutos:segundos, excepto para el parámetro **START CLOCKTIME**.
- c. Todas las instrucciones de la sección [TIMES] son opcionales. Las palabras separadas por una barra inclinada (/) indican alternativas posibles.

Ejemplo:

[TIMES]	
DURATION	240 HOURS
QUALITY TIMESTEP	3 MIN
QUALITY TIMESTEP	0:03
REPORT START	120
STATISTIC	AVERAGE
START CLOCKTIME	6:00 AM

[TITLE]

Propósito:

Asociar un título descriptivo a la red objeto de análisis

Formato:

Un número indefinido de líneas de texto.

Notas:

La sección [TITLE] es opcional.

[VALVES]

Propósito:

Definir las características de todas las válvulas existentes en la red.

Formato:

Una línea por cada válvula, con la siguiente información:

- Identificativo ID de la válvula
- Identificativo ID del nudo aguas arriba
- Identificativo ID del nudo aguas abajo
- Diámetro, en mm (pulgadas)
- Tipo de válvula
- Consigna de la válvula
- Coeficiente de pérdidas menores

Notas:

a. Los tipos de válvulas contemplados, y sus consignas asociadas, son las siguientes:

Tipo de Válvula	Consigna
PRV (válvula reductora de presión)	Presión aguas abajo, en m (psi)
PSV (válvula sostenedora de presión)	Presión aguas arriba, en m (psi)
PBV (válvula de rotura de carga)	Caída de presión, en m (psi)
FCV (válvula de control del caudal)	Caudal de paso (en unidades de caudal)
TCV (válvula de regulación)	Coeficiente de Pérdidas (adimensional)
GPV (válvula de propósito general)	Identif. ID de la curva de pérdidas

b. Las válvulas de corte y de retención son consideradas como parte de una tubería, y no como un componente diferenciado (ver la sección [PIPES])

[VERTICES]

Propósito:

Identificar los vértices interiores que definen el trazado de las líneas.

Formato:

Una línea por cada uno de los vértices pertenecientes a alguna línea del modelo, con la siguiente información:

- Identificativo ID de la línea
- Coordenada X
- Coordenada Y

Notas:

- a. La vértices permiten dibujar las líneas del modelo como polilíneas, en lugar de tramos rectos que unen los nudos extremos.
- b. Las coordenadas de los vértices se deben expresar en el mismo sistema de referencia utilizado para expresar las coordenadas de los nudos y rótulos.
- c. La sección [VERTICES] es opcional, y no se utiliza cuando se ejecuta EPANET en modo comando.

Ejemplo:

[VERTICES] ;ID Línea Coord X Coord Y ;------1 10042 110 1 10051 105

C.3 Formato del Fichero de Informe de Resultados

Las instrucciones introducidas en la sección [REPORT] del fichero de entrada controlan el contenido del Fichero de Informe de Resultados generado al ejecutar EPANET en modo comando. Un extracto del informe de resultados generado con el fichero de entrada de la Figura C.1 se muestra en la Figura C.2. En términos generales, un informe de resultados contiene las siguientes secciones:

- Sección de Estados
- Sección de Energías
- Sección de Nudos
- Sección de Líneas

Sección de Estados

La sección de *Estados* del informe de resultados lista el estado inicial de todos los embalses, depósitos, bombas y válvulas, las tuberías inicialmente cerradas, así como todos los cambios de estado habidos en dichos componentes durante el transcurso de la simulación. El estado de los embalses y depósitos nos informa sobre si éstos se están llenando o vaciando. El estado de las líneas indica si éstas se encuentran abiertas o cerradas, e incluye también la velocidad relativa fijada para las bombas y las consignas de presión o decaudal impuestas para las válvulas. Para incluir una Sección de Estados en el informe de resultados, incorporar la instrucción **STATUS YES** en la sección [REPORT] del fichero de entrada.

Si en su lugar se incluye la instrucción **STATUS FULL** se generará, además, un listado completo con los resultados del proceso de convergencia para todas las iteraciones realizadas en cada intervalo de cálculo durante la simulación. En dicho listado se indica también qué componentes cambian de estado durante las iteraciones. Este nivel de detalle es útil sólo cuando se quiere depurar una simulación que llega a converger debido el cambio cíclico de estado de algún componente.

Sección de Energías

La sección de *Energías* del informe de resultados lista los consumos y costes asociados de cada una de las bombas de la red y el consumo energético global. Los datos listados para cada bomba son:

- Porcentaje de Utilización (tanto por ciento del tiempo de simulación que la bomba está en marcha)
- Rendimiento Medio
- Kilovatios hora consumidos por m³ (ó millón de galones) bombeado
- Potencia Media absorbida
- Potencia Punta utilizada
- Coste medio diario

También se incluye en el listado el coste total diario de bombeo y el coste del término de potencia (basado en la potencia punta²⁵). Para incorporar la Sección de Energías en el informe de resultados hay que incluir la instrucción **ENERGY YES** en la sección [REPORT] del fichero de entrada.

²⁵ Como ya se indicó anteriormente, la forma de valorar el término de potencia difiere en cada país.

Miércoles 30 Octubre 2002 a las 00:00:00 Página 1 EPANET * * Análisis Hidráulico y de Calidad para Redes de Distribución de Aqua * * Version 2.0 * Trad.español: Grupo REDHISP, UPV Financ: G. Aquas de Valencia * EPANET 2. Ejemplo de Tutorial (Unidades SI) Este ejemplo se corresponde con el descrito en el capítulo 2 del Manual en Español. Todas las unidades utilizadas están en el Sistema Internacional Fichero de Datos de Entrada tutorial_SI.inp Número de Nudos de Caudal 6 Número de Embalses 1 Número de Depósitos 1 Número de Tuberías 8 Número de Bombas 1 Número de Válvulas 0 Fórmula de Pérdidas Darcy-Weisbach Intervalo de Cálculo Hidráulico ... 1.00 hrs Precisión del Cálculo Hidráulico .. 0.001000 Número Máximo de Iteraciones 40 Análisis de Calidad Cloro Intervalo de Cálculo para Calidad . 5.00 min Tolerancia del Modelo de Calidad .. 0.01 mg/l Peso Específico Relativo 1.00 Viscosidad Cinemática Relativa 1.00 Coefic. de Difusión Relativo 1.00 Factor de Demanda 1.00 Duración Total 72.00 hrs Criterios para el Informe: Todos los Nudos Todas las Líneas Día y hora de comienzo del análisis: Miércoles 30 Octubre 2002 a las 00:00:00 Utilización de la Energía: _____ Porc. Rendim. kWh Pot.Media Pot.Punta Coste Bomba Utiliz. Medio /m3 kW kW /día _____ 100.00 75.00 0.15 25.16 25.29 0.00 9 _____ Térm. Potencia: 0.00 Coste Total: 0.00

Resultados en los	Nudos a 1	as 0:00:0	0 hr:		
Nudo	Demanda L/s	Altura m	Presión m	Cloro mg/l	
2 3 4 5 6 7 1 8	$\begin{array}{c} 0.00 \\ 5.00 \\ 5.00 \\ 7.50 \\ 5.00 \\ 0.00 \\ -43.95 \\ 21.45 \end{array}$	253.58 253.08 252.11 251.47 252.06 252.39 210.00 251.00	43.58 38.08 42.11 51.47 42.06 42.39 0.00 1.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 1.00\\ 0.00\\ 1.00\\ 0.00\\ \end{array}$	Embalse Depósito
Resultados en las	Líneas a	las 0:00:	00 hr:		
Línea	Caudal L/s	Veloc m/s	Pérdida /1000m		
1 2 3 4 5 6 7 8 9	43.95 27.64 11.30 2.16 -6.20 21.45 4.14 -3.36 43.95	$\begin{array}{c} 0.46\\ 0.39\\ 0.36\\ 0.07\\ 0.20\\ 0.44\\ 0.23\\ 0.19\\ 0.00\\ \end{array}$	0.50 0.46 0.64 0.03 0.22 0.70 0.43 0.29	-	
-	15.55	0.00	-43.58	Bomba	
Resultados en los	Nudos a l	Las 1:00:0	-43.58 0 hr: 	Bomba	
Resultados en los	Demanda L/s	as 1:00:00	-43.58 0 hr: Presión m	Bomba Cloro mg/l	
Resultados en los Nudo 2 3 4 5 6 7 1 8	Demanda L/s 0.00 5.00 5.00 7.50 5.00 0.00 -43.68 21.18	Altura m 253.78 253.28 252.32 251.68 252.27 252.60 210.00 251.25	-43.58 0 hr: Presión m 43.78 38.28 42.32 51.68 42.27 42.60 0.00 1.25	Cloro mg/l 1.00 0.97 0.00 0.00 0.00 0.00 1.00 0.00	Embalse Depósito
Resultados en los Nudo 2 3 4 5 6 7 1 8 Resultados en las	Demanda L/s 0.00 5.00 5.00 7.50 5.00 0.00 -43.68 21.18	Altura m 253.78 253.28 252.32 251.68 252.27 252.60 210.00 251.25 las 1:00:1	-43.58 0 hr: Presión m 43.78 38.28 42.32 51.68 42.27 42.60 0.00 1.25 00 hr:	Bomba Cloro mg/l 1.00 0.97 0.00 0.00 0.00 0.00 1.00 0.00	Embalse Depósito
Resultados en los Nudo 2 3 4 5 6 7 1 8 Resultados en las Línea	Nudos a 1 Demanda L/s 0.00 5.00 5.00 7.50 5.00 0.00 -43.68 21.18 Líneas a Caudal L/s	Altura m 253.78 253.28 252.32 251.68 252.27 252.60 210.00 251.25 las 1:00: Veloc m/s	-43.58 0 hr: Presión m 43.78 38.28 42.32 51.68 42.27 42.60 0.00 1.25 00 hr: Pérdida /1000m	Bomba Cloro mg/l 1.00 0.97 0.00 0.00 0.00 0.00 1.00 0.00	Embalse Depósito

Figura C.2 Extracto de un *Fichero de Informe de Resultados* (viene de la página anterior)

Sección de Nudos

La sección de *Nudos* del informe de resultados lista los resultados de la simulación para todos los nudos y parámetros identificados en la sección [REPORT] del fichero de entrada. Los resultados se imprimen para cada instante de la simulación fijado por el intervalo de resultados. El intervalo de resultados (**REPORT TIMESTEP**) se especifica en la sección [TIMES] del fichero de entrada. Los resultados en los instantes intermedios en que puedan darse algunos cambios como el arranque o paro de una bomba, o el cierre o apertura de un depósito que alcanza un nivel límite, no serán reportados.

Para reportar los resultados en los nudos, en la sección [REPORT] del fichero de entrada debe aparecer la palabra clave **NODES** seguida por una lista de los identificativos ID de los nudos a incluir en el informe. Pueden declararse varias líneas de **NODES** en el fichero. Para reportar los resultados en todos los nudos, utilizar la instrucción **NODES** ALL.

El conjunto de magnitudes a reportar por defecto para los nudos son la Demanda, la Altura, la Presión y la Calidad del Agua. Se puede especificar el número de decimales a mostrar para cada magnitud incluyendo en la misma sección [REPORT] instrucciones del tipo **PRESSURE PRECISION 3** (utilizar 3 decimales para imprimir las presiones). La precisión por defecto para todas las magnitudes son 2 decimales. Se puede también filtrar el contenido del informe para mostrar sólo los nudos o líneas en los cuales una determinada magnitud se encuentra por encima o por debajo de un cierto valor, añadiendo en la sección [REPORT] instrucciones del tipo **PRESSURE BELOW 20**.

Sección de Líneas

La Sección de Líneas del informe de resultados lista los resultados de la simulación para aquellas líneas y parámetros identificados en la sección [REPORT] del fichero de entrada. El intervalo para mostrar los resultados sigue las mismas pautas descritas para los nudos en el epígrafe anterior.

Al igual que con los nudos, para reportar los resultados en las líneas debe incluirse en la sección [REPORT] del fichero de entrada la palabra clave **LINKS**, seguida por una lista de los identificativos ID de las líneas a mostrar. Para mostrar todas las líneas utilizar la instrucción **LINKS ALL**.

Las magnitudes por defecto a mostrar en las líneas son el Caudal, la Velocidad, y la Pérdida Unitaria. Se pueden también incorporar el Diámetro, la Longitud, la Calidad del Agua, el Estado, la Consigna, el Coef. de Reacción y el Factor de Fricción, añadiendo instrucciones del tipo **DIAMETER YES** ó **DIAMETER PRECISION 0**. Las mismas convenciones utilizadas con los nudos para especificar el número de decimales de una magnitud o para filtrar los resultados por su valor, son aplicables igualmente a las líneas.

C.4 Formato del Fichero de Salida Binario

Si se especifica un tercer fichero en la línea de comandos que ejecuta EPANET, los resultados correspondientes a todas las magnitudes para todos los nudos y líneas, y en todos los instantes de cálculo, se almacenarán en dicho fichero utilizando un formato binario especial. Este fichero puede utilizarse para procesar posteriormente los resultados de la simulación. El tipo de datos que se escriben en el fichero son enteros de 4 bytes, números flotantes de 4 bytes o cadenas de longitud fija cuyo tamaño sea un múltiplo de 4 bytes. De esta forma el fichero puede dividirse convenientemente en registros de 4 bytes. El fichero consta de cuatro secciones, del siguiente tamaño en bytes:

Sección	Tamaño en Bytes
Preliminar	852 + 20*Nnudos + 36*Nlíneas + 8*Ndepósitos
Consumos Energéticos	28*Nbombas + 4
Resultados de la Simulación	(16*Nnudos + 32*Nlíneas)*Nperiodos
Epílogo	28

donde

Nnudos	=	número de nudos (de caudal + embalses + depósitos)
Nlíneas	=	número de líneas (tuberías + bombas + válvulas)
Ndepósitos	=	número de embalses y depósitos
Nbombas	=	número de bombas
Nperiodos	=	número de periodos con resultados

El valor de todos estos contadores queda registrado igualmente en las secciones Preliminar y Epílogo del fichero.

Sección Preliminar

La sección Preliminar del Fichero Binario de Salida contiene los siguientes datos:

Dato	Tipo	Número de Bytes
Número Mágico (= 516114521)	Entero	4
Versión (= 200)	Entero	4
Número de Nudos	Entero	4
(de Caudal + Embalses + Depósitos)		
Número de Embalses y Depósitos	Entero	4
Número de Líneas	Entero	4
(Tuberías + Bombas + Válvulas)		
Número de Bombas	Entero	4
Número de Válvulas	Entero	4
Tipo Modelo de Calidad	Entero	4
0 = ninguno		
1 = contaminante		
2 = tiempo permanencia		
3 = procedencia		
Índice Nudo de Procedencia	Entero	4
Unidades de Caudal	Entero	4
0 = cfs (pies cúbicos por segundo)		
1 = gpm (galones por minuto)		
2 = mgd (megagalones por día)		
3 = mgd Imperiales		
$4 = acre-ft/día (acres \cdot pies/día)$		
5 = litros/segundo		
6 = litros/minuto		
7 = megalitros/día		
8 = metros cúbicos/hora		
9 = metros cúbicos/ día		

	D (4
Unidades de presion	Entero	4
0 = psi (libra/ pulgada cuadrada)		
I = metros 2 - 1-D ₂ (1 1-D ₂ - 0.0102 K s (sm ²)		
2 = KPa (1 KPa = 0.0102 Kg/cm)		4
Tipo de Estadística	Entero	4
0 = no procesar ninguna estadística		
I = valor medio de los resultados		
2 = mostrar solo valores minimos		
3 = mostrar solo valores maximos		
4 = mostrar solo los rangos	.	
Instante Inicio Resultados (segundos)	Entero	4
Intervalo de Resultados (segundos)	Entero	4
Periodo de Simulación (segundos)	Entero	4
Título del Proyecto (1ª línea)	Carácter	80
Título del Proyecto (2ª línea)	Carácter	80
Título del Proyecto (3ª línea)	Carácter	80
Nombre del Fichero de Entrada	Carácter	260
Nombre del Fichero de Informe	Carácter	260
Nombre del Contaminante	Carácter	16
Unidades de Concentración Contam.	Carácter	16
Identificativo ID de cada Nudo	Carácter	16*Nnudos
Identificativo ID de cada Línea	Carácter	16*Nlíneas
Índice del Nudo Inicial de cada Línea	Entero	4*Nlíneas
Índice del Nudo Final de cada Línea	Entero	4*Nlíneas
Tipo de Línea	Entero	4*Nlíneas
$\overline{0}$ = Tubería con VR		
1 = Tubería		
2 = Bomba		
3 = Válvula Reductora		
4 = Válvula Sostenedora		
5 = Válvula Rotura Carga		
6 = Válvula Limitadora		
7 = Válvula Regulación		
8 = Válvula Propósito General		
Índice del Nudo de cada Depósito	Entero	4*Ndepósitos
Sección Transversal de cada Depósito	Flotante	4*Ndepositos
Cota de cada Nudo	Flotante	4*Nnudos
Longitud de cada Línea	Flotante	4*Nlíneas
Diámetro de cada Línea	Flotante	4*Nlíneas

Existe una correspondencia uno a uno entre el orden en que se escriben los identificativos ID de nudos y líneas en el fichero y el índice interno de estos componentes. Además, los embalses se distinguen de los depósitos en que su sección transversal aparece como cero.

Sección de Consumos Energéticos

La sección de *Consumos Energéticos* del Fichero Binario de Salida sigue inmediatamente a la sección Preliminar. Contiene los siguientes datos:

Dato	Tipo	Número de Bytes
Para cada bomba:		
• Índice de la Bomba en la Lista de Líneas	Flotante	4
• Utilización de la Bomba (%)	Flotante	4
Rendimiento Medio (%)	Flotante	4
• Kilowatios hora/m ³ (Millón Galones)	Flotante	4
Potencia Media	Flotante	4
Potencia Punta	Flotante	4
Coste Medio diario	Flotante	4
Potencia Punta Global	Flotante	4

Las estadísticas mostradas en esta sección hacen referencia al periodo de tiempo entre el instante en que se comienzan a mostrar los resultados y el instante final de la simulación.

Sección de Resultados de la Simulación

La sección de *Resultados de la Simulación* del Fichero Binario de Salida contiene los resultados de la simulación para cada periodo de cálculo solicitado (el instante en que se inician a mostrar los resultados y el intervalo de tiempo entre resultados figuran en la sección Preliminar del Fichero de Salida; además, el número de instantes reportados figura en la sección Epílogo). Para cada instante en que se reportan los resultados, se escriben los siguientes valores en el fichero:

Dato	Tipo	Número de
		Bytes
Demanda en cada Nudo	Flotante	4*Nnudos
Altura Piezométrica en cada Nudo	Flotante	4*Nnudos
Presión en cada Nudo	Flotante	4*Nnudos
Calidad del Agua en cada Nudo	Flotante	4*Nnudos
Caudal en cada Línea	Flotante	4*Nlíneas
(negativo si el flujo es inverso)		
Velocidad en cada Línea	Flotante	4*Nlíneas
Pérdida de carga por cada 1000 unidades de	Flotante	4*Nlíneas
longitud, en cada Línea (Incremento de Altura –		
negativo- si es una Bomba, o Pérdida Total si es		
una Válvula)		
Calidad Media del Agua en cada Línea	Flotante	4*Nlíneas
Estado de cada Línea	Flotante	4*Nlíneas
0 = cerrada (se ha excedido la altura máxima)		
1 = temporalmente cerrada		
2 = cerrada		
3 = abierta		
4 = activa (parcialmente abierta)		
5 = abierta (se ha excedido el máximo caudal)		
6 = abierta (no se cumple la consigna de caudal)		
7 = abierta (no se cumple consigna de presión)		

Consigna para cada Línea:	Flotante	4*Nlíneas
Coeficiente de Rugosidad para las Tuberías		
Velocidad para las Bombas		
Consigna para las Válvulas		
Veloc. Reacción para cada Línea (masa/l/día)	Flotante	4*Nlíneas
Factor de Fricción para cada Línea	Flotante	4*Nlíneas

Sección Epílogo

La sección *Epílogo* del Fichero Binario de Salida contiene los siguientes datos:

Dato	Tipo	Número
		de Bytes
Veloc. Media de Reacción en el Medio (masa/h)	Flotante	4
Veloc. Media de Reacción en la Pared (masa/h)	Flotante	4
Veloc. Media de Reacción en Depósitos (masa/h)	Flotante	4
Caudal Másico Medio de Contaminante inyectado	Flotante	4
a la red (masa/h)		
Número de Instantes Reportados	Entero	4
Indicador de Advertencias:	Entero	4
0 = ninguna advertencia		
1 = se emitieron advertencias		
Número Mágico (= 516114521)	Entero	4

Las unidades de masa utilizadas para expresar las velocidades de reacción, tanto aquí como en la sección de Resultados de la Simulación, dependen de las unidades de concentración asociadas con la sustancia a considerar. Las velocidades de reacción listadas en esta sección corresponden a la media de las velocidades mostradas para todas las tuberías (o todos los depósitos), a lo largo de todo el periodo de simulación.

D.1 Análisis Hidráulico

El método que emplea EPANET para resolver simultáneamente las ecuaciones de continuidad en los nudos y las ecuaciones de comportamiento hidráulico de las tuberías, para un instante dado, puede clasificarse como un método híbrido de nudos y mallas. Todini y Pilati (1987), y más tarde Salgado et al. (1988) decidieron llamarlo "Método del Gradiente". Métodos similares fueron propuestos anteriormente por Hamam y Brameller (1971) (el "Método Híbrido") y por Osiadacz (1987) (el "Método de Newton para Nudos y Mallas"). La única diferencia entre estos métodos es la forma en que se actualizan los caudales de línea, después de haber encontrado una nueva solución provisional para las alturas en los nudos. Dado que la aproximación de Todini es la más simple, ésta fue la elegida para desarrollar EPANET.

Supongamos que tenemos una red de tuberías con N nudos de caudal y NF nudos de altura dada (embalses y depósitos). La relación entre la pérdida de carga para una tubería que va del nudo i al j, y el caudal de paso puede escribirse como:

$$H_i - H_j = h_{ij} = rQ_{ij}^n + mQ_{ij}^2$$
 D.1

donde H = altura piezométrica en el nudo, h = pérdida de carga, r = coeficiente de resistencia, Q = caudal, n = exponente del caudal, y m = coeficiente de pérdidas menores. El valor del coeficiente de resistencia depende de la fórmula utilizada para el cálculo de las pérdidas (ver más adelante). Para las bombas, la pérdida (esto es, la altura de la bomba cambiada de signo), puede representarse mediante una fórmula potencial del tipo:

$$h_{ii} = -\omega^2 (h_0 - r (Q_{ii} / \omega)^n)$$

donde h_0 es la altura a caudal nulo, ω es la velocidad relativa de giro, y r y n son coeficientes de la curva de la bomba.

El segundo sistema de ecuaciones a cumplir está configurado por la condición de equilibrio para los caudales en todos los nudos:

$$\sum_{j} Q_{ij} - D_i = 0 \quad \text{para} \quad i = 1, \dots N \qquad D.2$$

donde D_i es el caudal de demanda en el nudo *i*, el cual por convención se toma como positivo cuando entra al nudo. Dados los valores de las alturas en los nudos de altura prefijada, se trata de encontrar una solución para las alturas H_i en los restantes nudos, y para los caudales Q_{ij} de todas las líneas, que satisfagan las ecuaciones (D.1) y (D.2).

El método de resolución del Gradiente comienza haciendo una estimación inicial del caudal por cada tubería, sin necesidad de cumplir la ecuación de continuidad. En cada iteración del método, se obtienen las alturas piezométricas en los nudos resolviendo el sistema de ecuaciones:

AH = F D.3

donde \mathbf{A} = matriz Jacobiana (NxN), \mathbf{H} = vector de incógnitas nodales (Nx1), y \mathbf{F} = vector de términos independientes (Nx1)

Los elementos de la diagonal principal de la matriz jacobiana vienen dados por:

$$A_{ii} = \sum_{j} p_{ij}$$

y los elementos no nulos fuera de la diagonal principal, por:

$$A_{ij} = -p_{ij}$$

donde p_{ij} es la inversa de la derivada respecto al caudal, de la pérdida de carga en la línea que va del nudo *i* al *j*. Su expresión para las tuberías es:

$$p_{ij} = \frac{1}{nr|Q_{ij}|^{n-1} + 2m|Q_{ij}|}$$

y para las bombas:

$$p_{ij} = \frac{1}{n\omega^2 r(Q_{ij} / \omega)^{n-1}}$$

Los términos independientes están constituidos por el caudal residual no equilibrado en el nudo, más un factor de corrección dado por:

$$F_i = \left(\sum_j Q_{ij} - D_i\right) + \sum_j y_{ij} + \sum_f p_{if} H_f$$

donde el último término está presente sólo para las tuberías que conectan el nudo i con un nudo de altura conocida f; por su parte, el factor de corrección del caudal y_{ij} tiene por expresión:

$$y_{ij} = p_{ij} \left(r \left| Q_{ij} \right|^n + m \left| Q_{ij} \right|^2 \right) sgn(Q_{ij})$$

para las tuberías, donde sgn(x) es 1 si x > 0 y -1 en otro caso, e:

$$y_{ij} = -p_{ij}\omega^2 (h_0 - r(Q_{ij} / \omega)^n)$$

para las bombas (Q_{ij} es siempre positivo en este caso).

Una vez calculadas las nuevas alturas resolviendo las ecuaciones (D.3), los nuevos caudales se obtienen mediante:

$$Q_{ij} = Q_{ij} - (y_{ij} - p_{ij}(H_i - H_j))$$
 D.4

Si la suma, extendida a todas las líneas, del valor absoluto de la variación del caudal respecto al caudal total de cada línea es mayor que una cierta tolerancia (p. ej. 0,001), las ecuaciones (D.3) y (D.4) se resuelven de nuevo. Obsérvese que la fórmula de actualización (D.4) conduce al equilibrio de caudales en los nudos, tras la primera iteración.

- 1. El sistema de ecuaciones lineales D.3 se resuelve utilizando un método de matrices vacías, basado en la reordenación de los nudos (George y Liu, 1981). Una vez los nudos reordenados al objeto de minimizar el número de coeficientes de relleno en la matriz A, se realiza una factorización simbólica, de modo que sólo los elementos no nulos de A se almacenan en memoria para operar con ellos. A lo largo de una simulación en periodo extendido, la reordenación y factorización de la matriz se efectúa una sola vez, al comienzo del análisis.
- 2. Para la primera iteración del primer instante de simulación, los caudales en las tuberías se determinan con la condición de que la velocidad de circulación sea de 1 pie/seg. Por su parte, el caudal en las bombas se hace igual al caudal de diseño de la bomba (internamente todos los cálculos se realizan con las alturas en pies y los caudales en pies³/seg cfs)
- 3. El coeficiente de resistencia de una tubería (r) se calcula según se las fórmulas de la Tabla 3.1²⁶. En el caso de la ecuación de pérdidas de Darcy-Weisbach, el factor de fricción f se calcula mediante diferentes ecuaciones, dependiendo del Número de Reynolds (Re) del flujo:

Para Re < 2000 se emplea la fórmula de Hagen – Poiseuille (Bhave, 1991):

$$f = \frac{64}{Re}$$

Para Re > 4000 se emplea la aproximación de Swamee y Jain a la ecuación de Colebrook - White (Bhave, 1991):

$$f = \frac{0.25}{\left[\log_{10}\left(\frac{\varepsilon}{3.7d} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$$

Para 2000 < Re < 4000 se emplea una interpolación cúbica al Diagrama de Moody (Dunlop, 1991):

$$f = (X1 + R(X2 + R(X3 + X4)))$$

$$R = \frac{Re}{2000}$$

$$X1 = 7FA - FB$$

$$X2 = 0.128 - 17FA + 2.5FB$$

$$X3 = -0.128 + 13FA - 2FB$$

$$X4 = R(0.032 - 3FA + 0.5FB)$$

$$FA = (Y3)^{-2}$$

$$FB = FA\left(2 - \frac{0.00514215}{Y2 \cdot Y3}\right)$$

²⁶ más bien las indicadas al pie de página, al trabajar internamente con unidades US (NdT)

$$Y2 = \frac{\varepsilon}{3.7d} + \frac{5.74}{Re^{0.9}}$$
$$Y3 = -0.86859 \ln\left(\frac{\varepsilon}{3.7d} + \frac{5.74}{4000^{0.9}}\right)$$

donde ε = rugosidad de la tubería, y d = diámetro de la tubería.

4. El coeficiente de pérdidas menores K, referido a la altura de velocidad, se transforma en el factor equivalente m que multiplica al cuadrado del caudal, mediante la siguiente relación:

$$m = \frac{0.02517\,K}{d^4} \quad (^{27})$$

- 5. Los emisores aplicados en los nudos se modelan como una tubería ficticia entre el nudo y un embalse ficticio. Los parámetros de la tubería ficticia son $n = (1/\gamma)$, $r = (1/C)^n$, y m = 0, donde C es el coeficiente de descarga del emisor, y γ el exponente de la presión. La altura del embalse ficticio es la propia cota del nudo. El caudal de paso calculado por la tubería ficticia se interpreta como el caudal descargado por el emisor.
- 6. A las válvulas abiertas se les asigna un valor del coeficiente *r* calculado bajo el supuesto de que la válvula actúa como una tubería lisa (f = 0,02), cuya longitud es dos veces el diámetro de la válvula. Las líneas cerradas se supone que obedecen a una relación de pédidas lineal con un factor de resistencia muy grande, p. ej. $h = 10^8 Q$, con lo que $p = 10^{-8}$ e y = Q. Para las líneas en las cuales $(r+m)Q < 10^{-7}$, se tiene $p = 10^7$ e y = Q/n.
- 7. En cada instante de cálculo se comprueba, tras cada iteración hasta la décima, el estado de las bombas, válvulas de retención, válvulas de control del caudal y tuberías que conectan con depósitos llenos o vacíos. Después de la décima iteración, el estado de estos componentes se vuelve a comprobar de nuevo una vez obtenida la convergencia, excepto para las válvulas de control de la presión (Reductoras y Sostenedoras, ó VRP y VSP), cuyo estado se comprueba en todas las iteraciones.
- 8. Durante la comprobación del estado de los diferentes componentes, las bombas se paran si la altura requerida es superior a su altura a caudal cero (para impedir el flujo inverso). Análogamente, las válvulas de retención (VR) se cierran si la pérdida de carga resultante es negativa (ver más adelante). Si más adelante dejan de darse estas circunstancias, dichos elementos vuelven a reactivarse. De forma similar se comprueba el estado de las líneas que conectan con depósitos que poseen limitaciones de nivel. Dichas líneas se cierran si la diferencia de alturas inducen al vaciado de un depósito que está a su nivel mínimo, o al llenado de un depósito que está a su nivel máximo; y se abren de nuevo al dejar de darse estas circunstancias.

²⁷ En unidades métricas SI el coeficiente numérico sería 0,08262 en vez de 0,02517 (NdT)

9. La simple comprobación del signo de la pérdida (h < 0) para determinar si una Válvula de Retención (VR) debe estar cerrada o abierta, daba lugar en algunas redes a un comportamiento cíclico de la válvula entre estos dos estados, debido a los límites de precisión numérica. Finalmente se comprobó que el siguiente procedimiento conducía a un comportamiento más robusto de estas válvulas:

si $ h > Htol$ entor	ices	
si <i>h</i> < - <i>Htol</i>	entonces	estado = CERRADA
si $Q < -Qtol$	entonces	estado = CERRADA
si no		estado = ABIERTA
si no		
si $Q < -Qtol$	entonces	estado = CERRADA
si no		estado = sin cambios

donde Htol = 0,0005 pies y Qtol = 0,001 pies³/seg.

- 10. Si la verificación del estado de una bomba, tubería o VR conduce a su cierre total, entonces el valor del caudal se fuerza a 10^{-6} pies³ /seg. Cuando se reactiva de nuevo una bomba, su caudal se determina entrando en su curva característica con la altura actual. Cuando se reabre una tubería o una VR, su caudal se determina resolviendo la ecuación D.1 para la pérdida de carga actual *h*, ignorando cualquier pérdida menor.
- 11. Los coeficientes de la matriz jacobiana correspondientes a las Válvulas de Rotura de Carga (VRC) se fuerzan a los siguientes valores: $p = 10^8$ e $y = 10^8$ *Hset*, donde *Hset* es la caída impuesta como consigna en la válvula (en pies). Las Válvulas de Regulación (VRG) son tratadas como tuberías, cuyo coeficiente *r* se determina según lo indicado en el epígrafe 6 y cuyo coeficiente *m* se obtiene transformando el coeficiente de consigna impuesto en la válvula (ver epígrafe 4).
- 12. Los coeficientes de la matriz jacobiana correspondientes a las Válvulas Reductoras (VRP), Sostenedoras (VSP) y Limitadoras de Caudal (VLQ) se calculan una vez todas las demás líneas han sido analizadas. La comprobación del estado de las VRPs y VSPs se efectúa según se ha descrito en el epígrafe 7. Estas válvulas pueden estar completamente abiertas, completamente cerradas, o bien activas imponiendo las consignas de presión o caudal establecidas.
- **13.** La lógica empleada para comprobar el estado de una VRP es la siguiente:

si $Q < -Qto$	entonce	es nuevo estado = CERRADA
si Hi < Hset + Hml – Htol	entonces nuevo estado = ABIERTA	
	si no	nuevo estado = ACTIVA

Si estado actual = ABIERTA entonces

si	Q < -Qtol	entonces	nuevo estado = CERRADA
si	Hi > Hset + Hml + Htol	entonces	nuevo estado = ACTIVA
		si no	nuevo estado = ABIERTA

nuevo estado = CERRADA

Si estado actual = CERRADA	entonces
si $Hi > Hj + Htol$	
y $Hi < Hset - Htol$	entonces nuevo estado = ABIERTA
si $Hi > Hj + Htol$	
y $Hj < Hset - Htol$	entonces nuevo estado $= ACTIVA$

donde Q es el caudal actual a través de la válvula, Hi es la altura aguas arriba, Hj la altura aguas abajo, Hset la presión de consigna transformada en altura, Hml la pérdida menor a válvula abierta (= mQ^2), y finalmente Htol y Qtol son los mismos valores utilizados para las válvulas de retención, ya vistas en el epígrafe 9. Para las Válvulas Sostenedoras de Presión se efectúa una comprobación similar, excepto que en las inecuaciones en que interviene Hset, los subíndices i y j aparecen intercambiados, así como los operadores > y <.

si no

14. El caudal que atraviesa una VRP activa es forzado a entrar por el nudo aguas abajo, mientras que el que atraviesa una VSP es obligado a salir del nudo aguas arriba. Para imponer la presión de salida de una VRP activa que vaya del nudo *i* al *j*, se hace:

$$p_{ij} = 0$$

$$F_j = F_j + 10^8 Hset$$

$$A_{jj} = A_{jj} + 10^8$$

Con ello se fuerza a la altura en el nudo aguas abajo a tomar el valor de la altura de consigna *Hset*. Para las VSP se procede de manera análoga, excepto que los subíndices de F y A son los correspondientes al nudo aguas arriba *i*. Cuando las VRPs ó VSPs están totalmente abiertas o cerradas, sus coeficientes en la matriz son tratados del mismo modo que para las tuberías.

- **15.** Para una Válvula Limitadora de Caudal (VLQ) activa que vaya del nudo *i* al *j*, cuyo caudal de consigna es *Qset*, éste es añadido al caudal que sale del nudo *i* y al caudal que entra al nudo *j*, para lo cual se resta de F_i y se añade a F_j . Si la altura en el nudo *i* es menor que la del nudo *j*, entonces la válvula no puede proporcionar el caudal y es tratada como una tubería abierta.
- 16. Una vez conseguida inicialmente la convergencia (convergencia de los caudales, sin cambios en las VRPs y VSPs) se realiza una nueva comprobación del estado de las bombas, VRs, VCQs, y líneas conectadas a depósitos. También se comprueba el estado de las líneas controladas por presión (p. ej. el estado de una bomba controlada por la presión en un nudo). Si hubiera algún cambio, las iteraciones se prolongan durante al menos dos nuevas pasadas (la comprobación de las condiciones de convergencia es omitida para la primera iteración). En caso contrario, la solución se da por buena.
- **17.** Para desarrollar las simulaciones en periodo extendido (EPS), se ha implementado el siguiente procedimiento:

- a. Una vez encontrada una solución para el instante actual, el incremento de tiempo adoptado para avanzar hasta el instante siguiente será el mínimo entre:
 - el instante en que comienza un nuevo periodo de demanda,
 - el menor intervalo de tiempo que hace que se llene o vacíe algún depósito,
 - el menor intervalo de tiempo para el cual el nivel en algún depósito alcanza el valor de referencia que provoca el cambio de estado en alguna línea (p. ej. arrancar o parar una bomba), según figura en alguna de las leyes de control simples,
 - el próximo instante en que debe actuar alguna de las leyes de control simple reguladas por tiempo.
 - el próximo instante en que alguna de las leyes de control basadas en reglas provoque un cambio en la red.

Para calcular el instante en que se alcanza un determinado nivel en un depósito, se supone que éste evoluciona linealmente en base a los caudales actuales que entran o salen del depósito.

Por su parte, el instante de activación de las leyes de control basadas en reglas, se determina del siguiente modo:

- Comenzando en el instante actual, las distintas reglas se analizan paso a paso, avanzando con un intervalo de tiempo fijo, cuyo valor por defecto es 1/10 del intervalo de cálculo hidráulico (por ejemplo, si el intervalo de cálculo hidráulico es de 1 hora, entonces las reglas se evalúan cada 6 minutos).
- En base a este intervalo de tiempo se actualiza la hora de la simulación, y al mismo tiempo los niveles de agua en los depósitos (tomando como referencia los últimos caudales entrantes o salientes calculados).
- Si en un momento dado se cumple alguna de las reglas, las actuaciones derivadas se añaden a una lista. Si la actuación propuesta entra en conflicto con otra actuación de la lista sobre la misma línea, prevalece aquella que tiene una prioridad más alta, siendo la otra eliminada. Si las prioridades son equivalentes, entonces prevalece la actuación que estaba ya en la lista.
- Después de haber evaluado todas las reglas, si la lista no está vacía se ejecutan todas las actuaciones almacenadas. Si como consecuencia de dichas actuaciones cambia el estado de una o más líneas, se procede a obtener una nueva solución y el proceso de simulación continúa.
- Si no hay ningún cambio de estado en ninguna línea, se limpia la lista de actuaciones, y se pasa a evaluar las reglas en el siguiente instante, a no ser que se haya alcanzado el próximo intervalo hidráulico.

- b. Una vez determinado el intervalo de avance, se actualiza el tiempo de la simulación, se calculan las nuevas demandas, se ajustan los niveles en los depósitos en base a los últimos caudales calculados, y se verifican las reglas de control para determinar qué líneas deben cambiar su estado.
- c. Se desencadena un nuevo proceso iterativo para resolver el conjunto de ecuaciones D.3 y D.4, partiendo de los caudales actuales.

D.2 Análisis de la Calidad del Agua

Las ecuaciones que gobiernan el simulador que utiliza EPANET para determinar la calidad del agua, están basadas en el principio de conservación de la masa, acoplado con las cinéticas de reacción. Los fenómenos contemplados en el modelo son los siguientes (Rossman et al., 1993; Rossman y Boulos, 1996):

Transporte Convectivo en las Tuberías

Una sustancia disuelta en el agua es transportada a lo largo de la tubería con la misma velocidad media que el fluido, y al mismo tiempo reacciona (creciendo o bien decreciendo) con una cierta velocidad de reacción. La dispersión longitudinal de la sustancia no constituye un mecanismo de transporte relevante en la mayoría de condiciones de operación de la red. Ello significa que no hay intercambio de masa entre porciones de agua adyacentes mientras éstas viajan por las tuberías. El transporte convectivo de masa en el interior de una tubería viene caracterizado por la ecuación:

$$\frac{\partial C_i}{\partial t} = -u_i \frac{\partial C_i}{\partial x} + R(C_i)$$
 D.5

donde C_i = concentración (masa/volumen) en la tubería *i*, la cual es función de la distancia *x* y del tiempo *t*, u_i = velocidad del flujo (longitud/tiempo) en la tubería *i*, y R = velocidad de reacción (masa/volumen/tiempo) como una función de la concentración.

Mezcla en la Confluencia de Tuberías

El proceso de mezcla en los nudos a los cuales llega el caudal procedente de dos o más tuberías, se supone que es completo e instantáneo. Por consiguiente, la concentración de una sustancia en el agua cuando abandona el nudo, es simplemente las suma ponderada respecto a los caudales, de las concentraciones de todos los flujos que llegan al nudo. Así, para un nudo determinado k puede escribirse:

$$C_{i|x=0} = \frac{\sum_{j \in I_k} Q_j C_{j|x=L_j} + Q_{k,ext} C_{k,ext}}{\sum_{j \in I_k} Q_j + Q_{k,ext}}$$
D.6

donde *i* = línea por la que sale caudal del nudo *k*, I_k = conjunto de líneas que fluyen hacia el nudo *k*, L_j = longitud de la línea *j*, Q_j = caudal (volumen/tiempo) de la línea *j*, $Q_{k,ext}$ = caudal externo que entra a la red por el nudo *k*, y $C_{k,ext}$ = concentración del caudal externo que entra por el nudo *k*. La variable $C_{i/x=0}$ representa la concentración al inicio de la línea *i*, mientras que $C_{i/x=L}$ representa la concentración al final de la misma línea.

Mezcla en los Depósitos de Regulación

Resulta normalmente adecuado suponer que el agua almacenada en los embalses y depósitos se encuentra totalmente mezclada. Esta hipótesis es razonable para muchos depósitos de regulación que se llenan y vacían periódicamente, supuesto que la cantidad de movimiento del flujo entrante es suficiente (Rossman y Grayman, 1999). Bajo la hipótesis de mezcla completa, la concentración en el depósito será el resultado de combinar la concentración del agua entrante con la del agua almacenada en ese momento en el depósito. Al mismo tiempo, la concentración propia del agua almacenada en el depósito puede cambiar debido a las reacciones internas. La siguiente ecuación tiene en cuenta todos estos fenómenos:

$$\frac{\partial (V_s C_s)}{\partial t} = \sum_{i \in I_s} Q_i C_{i/x=L_i} - \sum_{j \in O_s} Q_j C_s + R(C_s)$$
 D.7

donde V_s = volumen almacenado en el depósito en el instante t, C_s = concentración del agua existente en el depósito, I_s = conjunto de líneas por las que entra agua al depósito, y O_s = conjunto de líneas por las que sale agua del depósito.

Reacciones en el seno del agua

Mientras una sustancia se desplaza por el interior de una tubería o permanece en un depósito, puede reaccionar con otros constituyentes del agua. La velocidad de reacción se expresa generalmente como una función potencial de la concentración, según:

$$R = K_h C^h$$

donde C = concentración actual de la sustancia, K_b = constante de reacción, y n = orden de la reacción. Cuando existe una concentración límite a la cual tiende el crecimiento o decrecimiento de la sustancia, la velocidad de reacción se expresa como:

$$R = K_b (C_L - C) C^{(n-1)}$$
 para $n > 0$, $K_b > 0$

$$R = K_b (C - C_L) C^{(n-1)}$$
 para $n > 0$, $K_b < 0$

donde C_L = concentración límite.

Algunos ejemplos típicos de velocidades de reacción son los siguientes:

• Decrecimiento Simple de Primer Orden ($C_L = 0, K_b < 0, n = 1$)

$$R = K_{h}C$$

El decrecimiento de la concentración de muchas sustancias, como el cloro, puede caracterizarse adecuadamente mediante una reacción simple de primer orden.

• Crecimiento de Primer Orden hasta la Saturación (CL > 0, Kb > 0, n = 1):

$$R = K_b (C_L - C)$$

Este modelo puede aplicarse al crecimiento de las sustancias derivadas de la desinfección, tales como los trihalometanos, cuya velocidad de formación está limitada en última instancia por la cantidad presente del reactivo precursor.

• Decrecimiento de Segundo Orden con Dos Componentes (CL 0, Kb < 0, n = 2):

$$R = K_b C (C - C_L)$$

Este modelo supone que la sustancia A reacciona con la sustancia B a cierta velocidad desconocida, para dar el producto P. La velocidad con que desaparece A es proporcional al producto de las cantidades actuales de A y B. La concentración límite C_L puede ser positiva o negativa, dependiendo de que el componente en exceso sea el A o el B respectivamente. Clark (1998) consiguió aplicar con éxito este modelo para justificar una serie de datos referentes al decaimiento del cloro que no se ajustaban a un modelo de primer orden.

• *Cinética de Decrecimiento de Michaelis-Menton (CL > 0, Kb < 0, n < 0):*

$$R = \frac{K_b C}{C_I - C}$$

Como caso especial, cuando se especifica una reacción de orden n negativo, EPANET utiliza la ecuación de Michaelis-Menton mostrada más arriba para determinar la velocidad de decrecimiento de la sustancia (para reacciones en que la sustancia crece, el denominador debe ser $C_L + C$). Esta velocidad de reacción es utilizada para describir reacciones catalizadas por enzimas y crecimientos bacterianos. Da lugar a comportamientos similares a los de las reacciones de primer orden para bajas concentraciones y a los de las reacciones de orden cero para altas concentraciones. Obsérvese que para reacciones de decrecimiento, C_L debe fijarse en un valor más alto que la concentración inicial de la sustancia presente.

Koechling (1998) ha aplicado la cinética de Michaelis-Menton para modelar el decaimiento del cloro en diferentes tipos de aguas, y ha encontrado que tanto K_b como C_L pueden relacionarse con el contenido de materia orgánica del agua y su absorbancia ultravioleta mediante las siguientes expresiones:

$$K_b = -0.32 UVA^{1,365} \frac{(100 UVA)}{DOC}$$

$$C_L = 4.98 UVA - 1.91 DOC$$

donde UVA = absorbancia ultravioleta a 254 nm (1/cm) y DOC = concentración de carbono orgánico disuelto (mg/L).

- **Nota:** Estas expresiones son aplicables sólo para obtener los valores de K_b y C_L a utilizar en una cinética de Michaelis-Menton.
- Crecimiento de Orden Cero ($C_L = 0, K_b = 1, n = 0$)

$$R = 1,0$$

Este caso especial puede utilizarse para simular el tiempo de permanencia del agua en la red, en cuyo caso por cada unidad de tiempo la "concentración" (esto es, el tiempo de permanencia) se incrementa en una unidad.

La relación entre la constante de reacción en el seno del agua a una temperatura (T1) y a otra temperatura (T2) se expresa a menudo mediante la ecuación de van't Hoff – Arrehnius, cuya expresión es:

$$K_{h2} = K_{h1} \theta^{T2-T1}$$

donde θ representa una constante. Durante una de investigación realizada trabajando con el cloro, se obtuvo para θ el valor 1,1, siendo la temperatura T1 de 20° C (Koechling, 1998).

Reacciones en las Paredes de las Tuberías

Mientras el agua discurre por las tuberías, las sustancias disueltas pueden verse transportadas hasta la pared y reaccionar con materiales como los productos de la corrosión o el biofilm que se desarrolla en la misma la pared o cerca de ella. Tanto la cantidad de superficie sometida a reacción, como la velocidad de transferencia de masa entre la corriente principal y la pared, influyen sobre el valor global de la velocidad de reacción con la pared. El primer factor viene determinado por la superficie expuesta por unidad de volumen, que para una tubería circular es igual a 4 dividido por su diámetro. El segundo factor puede representarse mediante un coeficiente de transferencia de masa, cuyo valor depende del coeficiente de difusión molecular de las especies reactivas, y del número de Reynolds del flujo (Rossman et. al, 1994). Para cinéticas de primer orden, la velocidad de reacción con la pared puede expresarse como:

$$R = \frac{4k_w k_f C}{d(k_w + k_f)}$$

donde k_w = constante de reacción en la pared (longitud/tiempo), k_f = coeficiente de transferencia de masa (longitud/tiempo), y d = diámetro de la tubería. Para cinéticas de orden cero, la velocidad de reacción no puede ser superior a la velocidad de transferencia de masa, con lo que:

$$R = MIN(k_w, k_f C)(4/d)$$

donde k_w tiene ahora unidades de masa/área/tiempo.

El coeficiente de transferencia de masa se expresa usualmente en función del número adimensional de Sherwood (*Sh*):

$$k_f = Sh\frac{D}{d}$$

en donde D = coeficiente de difusión molecular de las especies transportadas (longitud²/tiempo) y d = diámetro de la tubería. Para un flujo laminar totalmente desarrollado, el valor medio del número de Sherwood a lo largo de la tubería puede expresarse como:

$$Sh = 3,65 + \frac{0,0668(d/L) Re Sc}{1 + 0,04 [(d/L) Re Sc]^{2/3}}$$

donde Re = número de Reynolds y Sc = número de Schmidt (viscosidad cinemática del agua dividido por el coeficiente de difusión de la sustancia) (Edwards et.al, 1976). Para flujo turbulento puede utilizarse la correlación empírica de Notter y Sleicher (1971):

$$Sh = 0.0149 Re^{0.88} Sc^{1/3}$$

El Sistema de Ecuaciones

El sistema de ecuaciones D.5 a D.7, cuando se aplican a una red en su conjunto, constituyen un sistema de ecuaciones algebraico-diferenciales, con coeficientes variables en el tiempo, el cual hay que resolver para obtener los valores de C_i en cada tubería *i*, y C_s en cada depósito *s*. La solución del sistema está sujeta al siguiente conjunto de condiciones externas:

- las condiciones iniciales, la cuales fijan los valores de C_i para todos los segmentos x de cada tubería i, y los valores de C_s en todos los embalses y depósitos, para el instante 0,
- las condiciones de contorno, que imponen los valores de $C_{k,ext}$ y $Q_{k,ext}$ para todos los instantes *t*, en aquellos nudos en los que hay una inyección externa de la sustancia química objeto de estudio.
- las condiciones hidráulicas, que nos determinan los volúmenes V_s en cada depósito s y los caudales Q_i en cada línea i, para todos los instantes t.

El Algoritmo de Transporte Lagrangiano

El simulador de calidad de EPANET utiliza una aproximación Lagrangiana para efectuar el seguimiento, a intervalos fijos de tiempo, del destino de una serie de segmentos discretos de agua considerados a priori, a medida que éstos avanzan por las tuberías y se mezclan en los nudos de confluencia (Liou y Kroon, 1987). Los intervalos de tiempo utilizados para ejecutar el modelo de calidad son mucho menores que el intervalo de cálculo hidráulico (p. ej. minutos en lugar de horas) con el fin de acomodar el método a los reducidos tiempos de viaje que pueden resultar para algunas tuberías. A medida que avanza el tiempo, el primer segmento aguas arriba de una línea incrementa su tamaño para alojar el agua que va entrando en la misma. Al propio tiempo, el último segmento de la línea pierde volumen debido al agua que abandona la línea, reduciéndose en un tamaño equivalente. En cuanto a los segmentos intermedios, su tamaño permanece constante. (ver Figura D.1).

Al final de cada intervalo de tiempo, EPANET lleva a cabo los siguientes pasos:

- 1. Se actualiza la calidad del agua en cada segmento, para tener en cuenta cualquier reacción que haya podido ocurrir durante dicho intervalo.
- 2. El agua de los primeros segmentos de todas las líneas que fluyen hacia cada nudo, se mezcla para calcular el nuevo valor del parámetro de calidad en el nudo. El volumen que aporta cada segmento será el producto del caudal de la tubería por el intervalo de tiempo. Si este volumen es superior al del segmento, éste se destruye y el segmento que le sigue aporta el volumen restante.
- **3.** Se añaden las contribuciones de las fuentes externas para determinar el valor final de la calidad en el nudo. Al mismo tiempo, se actualiza la calidad en los depósitos, según el modelo de mezcla elegido (ver apartado 3.4).
- 4. Se crean nuevos segmentos en todas las líneas que salen de cada nudo, embalse o depósito. El volumen del segmento creado será igual al producto del caudal en la tubería por el intervalo de tiempo, y su calidad igual a la calculada para el nudo origen.

Al objeto de reducir el número de segmentos, el paso 4 se lleva a cabo únicamente si el nuevo valor de la calidad en el nudo difiere de la del último segmento de las líneas que salen de él en una cantidad superior a la tolerancia establecida por el usuario. Si la diferencia del nuevo valor de calidad es inferior a dicha tolerancia, entonces el tamaño del último segmento de la línea es simplemente incrementado en el volumen aportado a la tubería en el intervalo de tiempo considerado.

Todo este proceso se repite para cada intervalo de tiempo del modelo de calidad. Al comienzo de un nuevo intervalo de cálculo hidráulico, se invierte el orden de los segmentos para aquellas tuberías en las que haya habido un cambio en el sentido del flujo. Inicialmente, cada tubería de la red consta de un único segmento, cuya calidad es igual a la calidad inicial asignada al nudo aguas arriba.

Figura D.1 Comportamiento de los Segmentos en el Método de Resolución Lagrangiano

D.3 Referencias

Bhave, P.R. 1991. *Analysis of Flow in Water Distribution Networks*. Technomic Publishing. Lancaster, PA.

Clark, R.M. 1998. "Chlorine demand and Trihalomethane formation kinetics: a second-order model", *Jour. Env. Eng.*, Vol. 124, No. 1, pp. 16-24.

Dunlop, E.J. 1991. *WADI Users Manual*. Local Government Computer Services Board, Dublin, Ireland.

George, A. y Liu, J. W-H. 1981. *Computer Solution of Large Sparse Positive Definite Systems*. Prentice-Hall, Englewood Cliffs, NJ.

Hamam, Y.M, y Brameller, A. 1971. "Hybrid method for the solution of piping networks", *Proc. IEE*, Vol. 113, No. 11, pp. 1607-1612.

Koechling, M.T. 1998. Assessment and Modeling of Chlorine Reactions with Natural Organic Matter: Impact of Source Water Quality and Reaction Conditions, Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio.

Liou, C.P. y Kroon, J.R. 1987. "Modeling the propagation of waterborne substances in distribution networks", *J. AWWA*, 79(11), 54-58.

Notter, R.H. y Sleicher, C.A. 1971. "The eddy diffusivity in the turbulent boundary layer near a wall", *Chem. Eng. Sci.*, Vol. 26, pp. 161-171.

Osiadacz, A.J. 1987. Simulation and Analysis of Gas Networks. E. & F.N. Spon, London.

Rossman, L.A., Boulos, P.F., y Altman, T. (1993). "Discrete volume-element method for network water-quality models", *J. Water Resour. Plng. and Mgmt*,, Vol. 119, No. 5, 505-517.

Rossman, L.A., Clark, R.M., y Grayman, W.M. (1994). "Modeling chlorine residuals in drinking-water distribution systems", *Jour. Env. Eng.*, Vol. 120, No. 4, 803-820.

Rossman, L.A. y Boulos, P.F. (1996). "Numerical methods for modeling water quality in distribution systems: A comparison", *J. Water Resour. Plng. and Mgmt*, Vol. 122, No. 2, 137-146.

Rossman, L.A. y Grayman, W.M. 1999. "Scale-model studies of mixing in drinking water storage tanks", *Jour. Env. Eng.*, Vol. 125, No. 8, pp. 755-761.

Salgado, R., Todini, E., & O'Connell, P.E. 1988. "Extending the gradient method to include pressure regulating valves in pipe networks". *Proc. Inter. Symposium on Computer Modeling of Water Distribution Systems*, University of Kentucky, May 12-13.

Todini, E. y Pilati, S. 1987. "A gradient method for the analysis of pipe networks". *International Conference on Computer Applications for Water Supply and Distribution*, Leicester Polytechnic, UK, September 8-10.